
| I J l| III UH III IB MHMTBiai IIJIIMII I I I ■»HI III I i l« . ■ V - • w—■ ,

"LIFELINES

The Software Magazin
$3.00 May 1983 Volume III, No. 12 (ISSN 0279-2575, LISPS 597-830)

■34

i
i

A sleeping giant is about to awaken.

If you're serious about writing your next program in C (and you should be), check out the compe-
tition, then take a good look at Lattice C. We think you'll come to the same conclusion we did:
Lattice C is the finest 16-bit C compiler on the market today.

Completeness. . .
Lattice C is a full implementation of the C lan-
guage as defined by Kernighan and Ritchie (the
standard in the C world) including all standard
keywords, functions, and commands.
Performance. . .
Lattice C is the fastest sixteen -bit C compiler you
can buy. Fast in execution, and fast in compiling.
Lattice C produces compact code, with many load
modules as small as 5,000 bytes.

Lattice C runs on a wide variety of computers including the IBM® -PC, Wang PC™,TI Personal Computer™, DEC Rainbow™,
Victor 9000™, and other compatible 16-bit microcomputers operating under PC-DOS®, MS™-DOS, CP/M-86™, Con-
current CP/M™, SB-86™ and the Intel™ UDI system. Price: Lattice C $500 C-Food Smorgasbord $150

Lifeboat Associates
1651 Third Avenue, NY, NY 10028 (212) 860-0300

TWX: 710-581-2524 (LBSOFT NYK) Telex: 640693 (LBSOFT NYK)
lipping, handling, C.O.D. charges extra. Lattice C and C-Food Smorgasbord, TM Lattice, Inc. IBM and PC-DOS, reg. TM International Business Machines. CP/M-86 and Concur-
iputer, TM Texas Instruments. MS, TM Microsoft. WANG PC, TM Wang Laboratories. Victor 9000, TM Victor/Sirius Corp. DEC Rainbow, T M Digital Electronic Corporation.

Industry Acceptance. . .
Major manufacturers and software developers
already recognize the strength of Lattice C. New
products created with Lattice C include spread-
sheets, word processors, and data base managers.
A Total Development System . . .
The serious software developer will also want
C-Food Smorgasbord™, a complete C toolkit in-
cluding BCD decimal arithmetic package, screen
and i/o utilities.

Prices and specifications subject to change without notice. Prices F.O.
rent CP/M-86, TM Digital Research. SB-86, TM Lifeboat Associates. '

The Software Magazine

Publisher: Edward H. Currie
Editor in Chief: Susan Sawyer
Production Manager: Kate Gartner
■typographers: Paul Blockhaus, Rosalee Feibush
Printing Consultant: Sid Robkoff/E&S Graphics

New Versions Editor: Lee Ramos
Technical Editor: Al Bloch
Advertising Manager: Carolann Abrams
Cover: Kate Gartner

Features

3 Edix, A Database Manager

Software Notes

33 Macro of the Month
Ron Watson

6 A Review of Nevada Fortran Product Status Reports
Thomas Hill

12 Math* Reviewed
Robert P. VanNatta

15 A Comparison of C Compilers

31 New Products

31 New Versions

32 Bugs
Bruce N. Hunter

22 The Transporter Miscellaneous
Van Court Hare

25 How About Some POWER
Bob Kowitt

34 Estate Tax Plan
Robert P. VanNatta

28 Users Group Corner

29 Letter to the Editor

30 Attention Subscribers

Copyright © 1983, by Lifelines Publishing Corporation. No portion of
this publication may be reproduced without the writen permission
of the publisher. The single issue price is $3.00 for copies sent to
destinations in the U.S., Canada, or Mexico The single Issue price for
copies sent to all other countries is $4.30. All checks should be made
payable to Lifelines Publishing Corporation. Foreign checks must be
in U.S. dollars, drawn on a U.S. bank; checks, money order, VISA, and
MasterCard are aceptable All orders must be pre-paid. Please send
all correspondence to the Publisher at the address below.

Lifelines (ISSN 0279-2575JJSPS 597-830) Is published monthly at a
subscription price of $24 for twelve Issues, when destined for the U.S.
Canad, or Mexico $50 when destined for any other country. Second-
class postage paid at New York, New York, and other locations.
POSTMASTER, please send changes of address to Lifelines Publishing
Corporation, 1651 Third Avenue, New York, NY 10028.

Prosram names are generally TMs of their authors or owners. The CP/M User Guide is not af-
filiated with Digital Research, Inc.
Lifelines—TM Lifelines Publishing Corp.
The Software Magazine—TM Lifelines Publishing Corp.
SB-80, SB-86-TMs Lifeboat Associates
CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT, MP/M, TMs of Digital
Research Inc.
BASIC-80, MBASIC, Fortran 80-TMs Microsoft, Inc.
KIBITS—TM Bess Garber
Wordmaster & WordStar—TMs MicroPro International Corp.
PMATE-TMs Phoenix Software Associates, Ltd.
Z80-TM Zilog Corp.
Mr. Edit—TMMicro Resource Corp.
MINCE-TM, Mark of the Unicorn

me Geller. QUICKCODE is a program generator, a computer program which writes com
puter programs.

F FAST AND SIMPLE j
With QUICKCODE you can generate a customer database in 5 minutes. Its that

fast. All you have to do is draw your data entry form on the screen. It’s that simple!

NO PROGRAMMING REQUIRED
QUICKCODE writes concise programs to set up and maintain any type of

database. And the wide range of programs cover everything from printing mailing labels
and form letters, to programs that let you select records based on your own requirements.
There are even four new data types that are not available with dBASE II alone.

YOUR CONTROL
And since you work directly with your information at your own speed and

your own style, you maintain complete control. Telling your computer what to do has
never been so easy.

QUICKCODE, by Fox & Geller. Absolutely the most power-
ful program generator you’ve ever seen. Definitely the
easiest to use.

Ask your dealer for more information on QUICKCODE and all the other
exciting new products from Fox & Geller. FOX&GELLER

Fox & Gel le r , Inc. Dept. LI F 001 604 Market Street Elmwood Park, N.J. 07407 (201) 794-8883

QUICKCODE trademark of Fox & Geller, Inc
dBASE II is a trademark of Ashton-late

2 Lifelines/TheSoftware Magazine, May 1983

Edix, A Database Manager

by Ron Watson
Among those who work with com-
puters every day, the one subject
guaranteed to start an argument

used it to write a magazine article, a
BASIC program of about 1500 lines,

feature

through its strengths and weak-
nesses. Since many of the designers
are also programmers, most editors
are at their best when preparing or
editing a program. The features that
make the editor unique usually ad-

the program. I also used it for all the
little jobs one has for a text editor.
During this time, I continued to use

tured programming is text editors.
Everyone is sure that the one they
prefer is absolutely the best possible
and that all others are entirely

used EDIX on the IBM PC.

First, let's go over the documentation
and training support provided with
the software. The manual is the same
size as most of the software available
for the IBM PC, except they used a
padded binder with no slipcase.
There are only 62 pages, which is
good, but there are few charts or
diagrams and the type style is a bit
small, which is not so good. The
manual is strictly for reference,
however, as is explained in the intro-
duction. A programmed tutorial is

the products available before he de-
cided that he could do a better job

inflexibility of their opinions would
leave a Middle Eastern diplomat talk-

subject to certain limitations of
resources, however, and a balance
must be found between the features
to be provided and the resources
available. Features that are clumsy or
difficult to understand will not be
used.

Going through a manual for any text
editor, one can find any number of
features and capabilities costing un-
told thousands of dollars to develop
that are not known or even needed

on any text editor at his or her own
peril.

In the course of any month, I find
myself working with at least a half
dozen text editors, on main frames,
minis and micros. I have customers
with all sizes of hardware, and every
one has a text editor. Shielded by this

feel qualified to offer an opinion on
this very emotional subject. I have
observed that each has its own quired in the manual.
strengths and weaknesses. Having
worked on so many, it is apparent
that many are designed, not from an
original idea, but in an attempt, I
suppose, to do the job better, or to
bring the capabilities of an existing
editor from one machine to another.
EDIX, by Emerging Technology, the
one being reviewed here, resembles
the DEC EDIT product, and was
probbably written by people familiar
with it.
The first prerequisite to a fair and
reasoned judgement is to become
familiar enough with the product so
that the differences between it and
those to which one is more accus-
tomed do not cloud the opinion. Any
editor is entirely incidental to the job
being done, and to be really useful, it
must not intrude upon the thought
process any more than absolutely
necessary. Having to look up every
command in the reference manual

by one user in ten. Like everyone
who ever developed a program for
general use, the people at Emerging
Technology had to decide what
should be included and what should
not.

They came to some interesting con-
clusions, and it's not always obvious
why.

Probably the most striking feature of
this editor is its split-screen capabili-
ty. With a single key stroke, the
screen can be divided horizontally
and/or vertically in half, into as many
as four parts or windows, and each
window may be assigned to one of
twelve internal buffers. Each buffer
may be associated with its own exter-
nal file, making it possible, on the
surface, to deal with a great deal of
data in one edit session.

This is quite a set of capabilities, but
in a month of serious work, I found
very little use for the split screen, and
never with more than two windows.
Two buffers were handy on occasion,
three or four might be useful, but
twelve is extravagant. A buffer may
only be assigned to one window at a

(continued on next page)
3

What a tutorial! Every software
package should come with a facility
as well done as this one. Sit down at
the machine, run the program in its
tutorial mode, and in less than an
hour you've learned enough to be
proficient in all the important aspects
of its use. And if you forget how to in-
voke a function, just hit PF7 and get
as much or as little help as you might
require. This program wins the "user
friendly" derby hands down.

They have made full use of the PC's
alt-key, function key and cursor con-
trol capabilities. The function key
assignments may be changed by the
user, but I found no need for this as
the standard assignments were fine.
Besides, I didn't want to bother with
editing the help screen file to match
up with my changes.

The help function, tutorial, and key
utilization make this an excellent tool
for the occasional user, but what
about us old salts, the ones who
become so familiar with an editor
that our hands seem to know what to
do without being told?

Every editor I have used seems to ex-

can be a terrible distraction, so an
opinion offered before considerable
familiarity is achieved is really not
fair.

I have had the product for over a
month now and during that time

Lifelines/The Software Magazine, Volume III. Number 12

Files that are too large to fit into
available memory must be broken up
to be edited. No provision has been
made to manually or automatically
read or write partial files. This could
be pretty unpleasant on a 64k ma-
chine with the 5k limit, but consider-
ing the easy availability of larger
memory sizes on the IBM PC, it is
probably not a serious problem.

Text is entered and changed in the
usual manner, with one important
exception: the insert function is
always on and there is no way to turn
it off. This may or may not seem
strange to you; the DEC EDIT pro-
gram works this way. I found it clum-
sy at first, but determined to give this
method every opportunity to redeem
itself. After a month of trying, I sur-
rendered. It was just too uncomfor-
table for me. The extra key strokes re-
quired to delete data when an over-
strike would have served were a
serious distraction, and it was par-
ticularly difficult to maintain any col-
umn orientation. This may be a par-
ticularly personal criticism; no doubt
there are plenty of people who prefer
entering everything in insert mode. I
have surveyed twelve regular ter-
minal users and not found one yet,
but I suggest you try it for yourself
before deciding.
There is no way to define a right
margin for the screen display. So,
each text record always uses one and
only one line on the screen. Data
beyond the visible right margin of the
screen is brought into view by scroll-
ing the window to the right with the
cursor key, the same way Visicalc
displays a wide spread sheet. This
seemed alright at first, but when I
tried to edit a BASIC program con-
taining spaces on long lines designed
to make them readable on the BASIC
editor's screen, I found it nearly im-
possible to keep the needed spaces in
the appropriate places. Another dis-
comfort is caused if the file contains a
few long lines scattered among a ma-
jority of short lines; you can't see the
right side of the long lines without
scrolling the short lines off the
screen. Since there is no way to set a
right margin for text entry, you have
to watch the screen while you type if
you want to keep each line within a
certain boundary. This probably
makes the program unacceptable for
any high-volume text entry environ-
ment.

time, so the split screen cannot be
used to see two parts of the same file
at once. It might have been more
useful without this limitation. I have
worked with other editors that allow
split screens and multiple buffers,
usually on mainframe systems, and
have observed very few users actual-
ly making much use of either. Most
users, even the more technically
sophisticated, seem to find keeping
track of several buffers somewhat
confusing and susceptible to error,
and the utility of a split screen is
hampered by the necessarily small
size of the window. I think Emerging
Technology has misjudged the need
for these things. They do make a
great demonstration, though, and if
there are no serious deficiencies in
more important capabilities, then
there is no harm done.

There seems to be a full complement
of commands available. Files may be
read and written, strings may be
found and changed, lines may be in-
serted and deleted....What about
this line deletion? There is no block
delete command? One at a time?
Well, that's not so bad. There is a
block move that allows text to be
moved into another buffer that could
be used as a block delete, and there
would always be a spare copy of the
deleted text around. . .so long as there
is plenty of memory available.

Which brings up a slightly curious
situation. The maximum file size that
can be edited on a 64k machine ap-
pears to be about 5k, while the maxi-
mum on a 128k machine is about 40k.
The 40k limit is mentioned in the
manual, but it's not clear why adding
64k to the available main memory on-
ly increases the buffer space by 35k.
All those windows and buffers must
cost something. The program will
make use of as much as 128k, which
is as good or better than most pro-
grams available for the PC today, but
there is no way to find out if you are
nearing the end of available buffer
space. The alt-P command will show
what files and windows are associ-
ated with which buffers, but does not
show space used or space available.
The first indication one gets is when
the screen begins to roll furiously
and a message appears informing
one to save his files and terminate the
program immediately. This was the
only part of the program's function
that I would call unprofessional.

The tab key turned out to be of little
use. The tab stops are not changeable
and keyed tabs do not expand into
spaces on the screen. The tabs are
kept as tab characters in the buffer
until the file is written out, when
they are replaced by the appropriate
number of spaces. The area preced-
ing the tab on the screen is not ac-
cessible, but by deleting the tab, one
deletes all the space it occupies. The
back tab key is not usable. While the
overall function of the tabs is not too
bad, not being able to set the tab
stops meant they had little use for
me.

The block move and copy work quite
well. The alt-k command is used to
mark the beginning and end of the
text to be processed and then an alt-
m or alt-c command is given to move
or copy the marked block to the posi-
tion indicated by the cursor. Data
may be moved or copied from any
buffer into the current buffer, but on-
ly one buffer may contain a marked
block at any time. A third alt-k com-
mand is used to clear the existing
marks, but the cursor must be in the
buffer containing the marked block
before this can be done.

The global search and translate (their
word for replace) commands are
quite comprehensive, though a
method to search without regard to
shift case was not included. The
search command uses an argument
string that may contain several wild-
card characters and two search argu-
ments are actually available at once.
(This is what happened to the insert
function key: it is used to continue a
search in progress or to indicate ap-
proval for a replacement to be made.)
A search proceeds from the current
cursor position and continues to the
end of the buffer and around again as
long as you keep hitting the insert
key or until a complete pass is made
without finding anything. The cur-
rent search string is retained until
replaced with another, and the
previous string is always available.
The search stops each time the re-
quired string is found, and all the
normal editing functions are
available. If the translate command
was used, you have the option of
replacing the matched text, skipping
to the next match or exiting the com-
mand. There are many wild-card
characters available for the search,
including special codes that will

Lifelines/TheSoftware Magazine, May 19834

Emerging Technology certainly de-
serves some recognition for high
quality product testing.

CONCLUSION
This is a well produced product,
quickly learned and easy to use.
There is a certain lack of capability to
tailor the program to one's personal
preference, and to be really suc-
cessful in a market as competitive as
this, Emerging will have to provide
some customization options. If the
current configuration seems to fit
your needs, this program should be
seriously considered, particularly if
you are a new user, or one who uses
an editor only occasionally. An
oldtimer may find the shortcomings
intolerable, but then an oldtimer
would probably find any editor other
than the one he/she is now using
intolerable. H

quired for most questions is the
usual (y/n) for yes or no, but the pro-
gram allows only lower case answers.

The program works quite fast in most
circumstances. Diskette reads and
writes were done quickly, and search
times were quite respectable. The
screen update speed was more than
adequate in most cases.

It is important to note that during the
entire time I used the program, not
one program error was encountered.
That includes everything working as
specified in the documentation.
While I didn't actually try everything
described in the manual, I did test
the limits of the program and made a
real effort to confuse and confound it
with unusual command sequences.
Rarely have I encountered a new ap-
plication on any computer that was
as bug-free as this one seems to be.

match only the beginning or end of a
line. This is all well done and well
documented in the manual, but will
probably not be used by many.

The I/O commands work by assign-
ing a file name to a buffer so that all
subsequent read (alt-r) or write (alt-
w) commands from the buffer refer
to that file. If the program is invoked
with a file name parameter, that file
name is automatically assigned to
buffer number one. There is no
single command to exit the program
and write the output file: a separate
alt-w command must be given from
each buffer that has been changed
before the alt-x command is given to
exit the program. If you attempt to
issue the alt-x command while there
are unwritten changes in any buffer,
a warning is given and you must re-
spond to it before the program will
end. Incidentally, the response re-

Lifelines/The Software Magazine, Volume 111, Number 12 5

A Review of Nevada Fortran

by Thomas Hill
Introduction The Documentation

feature

Recently (January '83) Ellis Computing announced the
availability of their NEVADA series of languages (FOR-
TRAN, COBOL, and PILOT) for the unheard of price of
$29.95 each. Never missing a chance at a bargain, I im-
mediately purchased copies of all three. This particular ar-
ticle will address the NEVADA FORTRAN. In future
reviews I will be looking at Microsoft's FORTRAN and the
FORTRAN compiler from Supersoft. The final install-
ment will provide a comparative look at all three
compilers.

What's In The Box?

The manual accompanying the NEVADA FORTRAN is
well bound and punched for a three-ring notebook. The
material assumes some knowledge of FORTRAN IV, al-
though a person with a good background knowledge of
programming will probably have little difficulty making
sense of the material. The lack of an index is a little annoy-
ing, but the Table of Contents is sufficiently detailed that
the user should not have problems finding what is
needed.

The FORTRAN section of the manual is divided into the
following chapters:

Chapter 1 — The FORTRAN Language
Chapter 2 — Number System Conventions
Chapter 3 — Expressions
Chapter 4 — Control Statements
Chapter 5 — Program Termination
Chapter 6 — Array Specifications
Chapter 7 — Subprograms and Functions
Chapter 8 — Input/Output Statements
Chapter 9 — Operation of the Compiler
Chapter 10 — The NEVADA FORTRAN Library
Chapter 11 — Appendix

Chapter 1 provides some background about FORTRAN,
including the acceptable character set and a description of
the input line format required by the compiler. This last
item is important, since FORTRAN is sensitive to the
placement of certain characters in the input line. In par-
ticular, if a character is placed in the sixth character posi-
tion from the beginning of the line, the compiler assumes
the line is a continuation of the previous line. Also, char
acters after the 72nd position are ignored during compila-
tion. These two features are historic in nature, having
been used when the primary input to FORTRAN com-
pilers was by punched cards.
Chapter 2 describes the floating point storage format for
the compiler. It also describes the way hexadecimal values
are identified in the FORTRAN source program. Note that
the use of hex values in a program is an extension to the
standard FORTRAN and is generally not transportable. In
other words, if I write a program in NEVADA FORTRAN
syntax, using hexadecimal values, and attempt to compile
it using Microsoft's FORTRAN compiler, chances are the
Microsoft compiler will reject the program.

Chapters 3 thru 8 detail the syntax and limitations of the
various NEVADA FORTRAN statements and verbs. In
most cases the explanations are concise and well done,
although it helps to know some FORTRAN. Each state-
ment is explained on a separate page, making it easy to in-
sert your own comments and notes. One problem with
these chapters, particularly chapter 4, is that the various
explanations are not in any evident order. It would make
the manual much easier to use as reference if the
statements were placed in alphabetic order.

Lifelines/TheSoftware Magazine, May 1983

The NEVADA FORTRAN arrives on a single density 8"
CP/M disk with a 174 page manual. The manual is divided
into two sections, the first 137 pages dealing with the FOR-
TRAN and the remaining pages detailing the use of the in-
cluded 8080 assembler. The disk files include the follow-
ing:

FORT.COM
FRUN.COM

CONFIG.COM

< — This is the compiler.
<-- This is the FORTRAN

run-time package.
< — This program allows the

user to alter certain
compiler parameters.

<— This is the compiler
message file.

< — The assembler.
< — The run-time package for

the assembler.
< — A file of global declara-

tions for the FORTRAN
compiler.

Also included on the disk are the following demonstra-
tion programs:

CHAIN.FOR

DUMP.FOR

GRAPH.FOR
LOAD.FOR

LD.ASM

RAND.FOR

SEEK.FOR

SORT.FOR

TRACE.FOR

6

ERRORS

ASSM.COM
RUNA.COM

FDEFS.ASM

< — Illustrate the use of the
"CHAIN" statement

< — Illustrate the post-mortem
"DUMP"

< — Plots the Sine function
< — Illustrate the load & link

to an assembly level
routine.

< - The file "LOAD"ed
above.

< — Random number
generator test program.

< — Shows the use of the byte
level random access file
commands.

< — Demonstration Shell sort
routine.

< — Illustrates the use of the
"TRACE" and error
trapping functions.

double density/double sided 8" floppies controlled by a
DMA based disk controller. Execution time of the pro-
gram with a five-by-five test array was 15 seconds, a
respectable showing. Answers from the program in listing
1 are correct to 5 decimal digits when compared to the
known true answers.

The compilation of the program was performed using the
command:

FORTTSTEIGEN

This form of the compiler command sends the compiled
listing to the default drive, along with the intermediate
assembly file and the final .OBJ file. The compiler pro-
duces as output an .ASM text file. By using the proper
control options when invoking the compiler, this file may
be left intact for perusal and possible hand optimization.
In a normal compilation the compiler automatically in-
vokes the assembler after a successful compilation, pass-
ing the name of the file to the assembler. When the
assembler completes its task, the assembly source file is
erased, unless the programmer explicitly instructs the
compiler/assembler to leave the file intact.

One annoying quirk of the compiler is its handling of
"dangling" blank lines in the FORTRAN source file. If
blank lines are present after the final valid line of FOR-
TRAN code, the compiler assumes another segment of
the FORTRAN program is upcoming. When the end of
the file is reached, the compiler will abort with a fatal er-
ror, complaining of not finding an END statement. Since it
is very easy to build up blank lines at the end of text files, it
is necessary to explicitly erase any that have accumulated
before submitting the source program to the compiler.

To test the compatibility with FORTRAN programs
created using a 'standard' compiler, several programs and
subroutines were extracted from volume 3 of the "Col-
lected Algorithms of the ACM" series. Listings will not be
presented here, since the subject material involved eso-
teric mathematics and were of interest only to the author
(and others involved in computing such things as Bessel
functions, Legendre polynomials, and roots of polynom-
ials of degree 10 and higher.) If you wish listings, send me
a request via Lifelines and I'll mail them to you.

To resume the train of thought, the test programs were
submitted to the NEVADA FORTRAN unmodified from
the original source code, as published in the volume men-
tioned above. Of the four programs tried, three compiled
without errors, and no modifications were needed to pro-
duce the results listed with the published algorithm. The
fourth required slight modifications in several areas:

1) The compiler had to be instructed to reserve space for
150 symbols during compilation (the default is 50). The
reason for this apparently had to do with the large num-
ber of variables declared as COMMON.

2) Certain variables describing the floating-point
representation of values had to be altered to prevent over-
and under-flows.

3) The NEVADA FORTRAN required re-ordering of the
respective declarations of COMMON blocks versus the
declaration of array variables. This may just be idiosyn-
crasies of the respective compilers involved.

(continued on next page) 7

Chapter 9 describes the use of the compiler. The compiler
is invoked by:

FORT <filename>.LAO $<options>

where FORT is the compiler, <filename> is the name of a
FORTRAN source program, "L" indicates the destination
of the compiler produced listing,"A" indicates the destina-
tion of the intermediate .ASM file, and "O" indicates the
destination of the final .OBJ file. The <option> list follow-
ing the dollar sign is used to instruct the compiler to NOT
produce an assembly file, paginate the listing file, blank-
pad the FORTRAN source lines, and override default
values for certain internal compiler parameters. Execution
of the compiled program is accomplished by the
command:

FRUN <filename>

where FRUN is the FORTRAN run-time package. The
run-time package occupies memory from 0100H thru
3FFFH. It loads the FORTRAN compiled program into
memory at 4000H for execution. Note that the final com-
piled program IS NOT an executable .COM file.

Chapter 10 describes the NEVADA FORTRAN subroutine
library. It includes routines to open, close, rename, and
delete CP/M files, perform direct console input and con-
sole status checks, input and output to specified ports,
chain to other programs, load modules assembled with
the assembler, and perform a number of bit oriented func-
tions upon FORTRAN variables.

Finally, Chapter 11 describes the differences and non-
standard extensions which make NEVADA FORTRAN
different from the ANSI 1966 standard FORTRAN. Many
of these extensions have to do with the CP/M environ-
ment, such as raw port input and output and hexadecimal
representation of values. Chapter 11 also presents a list of
the built-in functions. Most of the standard FORTRAN
functions are represented, including the trigonometric
functions, the log functions, and the maximum and
minimum functions. Non-standard functions include a
random number generator and a bit oriented function
which allows setting, resetting, or testing of individual
bits of a variable.
One particularly interesting feature is the ability to in-
clude in-line 8080 assembly code in the FORTRAN pro-
gram. This code is passed to the assembler during the
compile operation and appears in the intermediate
assembly source file.

Using The Compiler
The program in Listing 1 was used as an input file. This
program is part of a larger set of FORTRAN subroutines
designed to perform a statistical operation called "factor
analysis." I won't attempt to explain what an "eigenvalue"
is, nor how it is used, since that would entail a rather thick
book. Suffice it to say that the calculation of eigenvalues is
a non-trivial application of the FORTRAN language and
has been studied by many people. Four test arrays were
submitted to the program and the results were checked
for accuracy against known values. The time of compila-
tion and execution of the program was also measured.
Compilation took one minute, ten seconds, while the
assembly step took 58 seconds. This compilation was per-
formed upon a Z80 based system, using a 4MHz clock and

Lifelines/The Software Magazine, Volume III, Number 12

Compiler Restrictions ________________
The NEVADA FORTRAN does not support the FOR-
TRAN variable types of COMPLEX and DOUBLE PRECI-
SION. The lack of COMPLEX data types is not restrictive,
since these can be supported via other array constructs, if
needed. The double precision data type, however, limits
the compiler's usefulness in some areas. This becomes ap-
parent when some program requires the definition of the
parameter commonly defined as "ETA", which is the
smallest value which can be added to one (1.0) and result
in a value larger than one. Using single precision variables
the value of ETA can be no smaller than 1.0E-6. Using dou-
ble precision, ETA may be as small as 1.0E-12.
Also lacking is the "EQUIVALENCE" statement, which is
used to provide a form of variable overlay. In most FOR-
TRAN programs this will not be missed. Format specifica-
tions "D" and "P" are not implemented: The "D" format
spec is intended for double precision variables and the
"P" spec is used to perform automatic scaling upon input
or output values. With proper programming this should
not be needed.

Extensions To Standard FORTRAN
One of the first extensions to standard FORTRAN that one
notices is the huge range of integers and real variables. In
NEVADA FORTRAN integer values may range from
99999999 to -99999999, while real values may range from
1.0E-127 to 1.0E + 126. This is accomplished by storing
numeric values internally in six byte packed BCD format.
Note that the real values are still limited to 8 digits of preci-
sion, only the dynamic range has been increased. Other
extensions include random access files at the byte level,
free-form input and output statements, multiple
RETURNS from subroutines, in-line assembly code, com-
plete runtime control over error trapping, and the exten-
sion of the IF statement to include a "THEN-ELSE"
structure.

One nice feature (which I am unable to take advantage of,
unfortunately) is the ability to configure the compiler to
use a North Star Floating Point board. This should greatly
increase the number crunching speed of the compiler,
although the manual indicates that use of the N* board
reduces the dynamic range of reals by half.

The Assembler
The assembler which is included with the NEVADA FOR-
TRAN package is intended primarily for use with the
FORTRAN (or COBOL). It is automatically invoked by the
compiler during program compilation. The programmer
may use it to create assembly level modules suitable for in-
corporation into a FORTRAN program by the proper ORG
statements. One result of this use of the assembler is that
it does not produce CP/M type .COM files. A file of type
.OBJ (this file type is apparently used by all NEXADA com-
piler products) is produced by the assembler. In order to
execute this "assembled" program, use the command:

RUNA <filename>[.ZLC]
where the <filename> is the primary name of the
assembled file and the [ZLC] are defined as:

Z - Zero memory before program
execution.

L -- Load the program but do not
execute, return control to
CP/M.

C - Create a standard .COM file
and return to CP/M. The pro-
gram is saved as a .COM file,
but is not executed.

The assembler is a relatively standard package, using 8080
mnemonics. Input file format is somewhat restrictive,
particularly to me. The assembler requires labels to ap-
pear in the first column of the input line and comment
lines MUST appear with the semicolon in the first col-
umn. This is a direct contradiction to my method of pro-
gram writing, which makes extensive use of the tab
character as the first character of a line. The usual reper-
toire of pseudo-ops are available to the programmer, in-
cluding the standard "DS", "DB" "DW", "EQU", and
"ORG". Also present are the following:

ASC - Define ASCII string. The first
non-blank character is con-
sidered the string delimiter,
and the string will end at the
next occurence of the
delimiter, or a carriage return.

ASCZ - As above, but a byte of OOH
will be appended to the end
of the string.

DDB — Define double byte. Similar to
the DW pseudo but the bytes
will be stored in the reverse
order: high byte first, follow-
ed by low byte.

COPY — Read source code from a
separate disk file. The
assembler will use the code
from this file until it is ex-
hausted, then return to the
main file.

IF <exp> Standard IF conditional
assembly switch. No ELSE
construct is supported.

Also included are listing control flags for pagination con-
trol and page titles.
Arithmetic expressions are supported for the four basic
operators. Operator precedence is not supported, neither
is parenthetical control.

Conclusions
The NEXADA FORTRAN package is an excellent product,
conforming sufficiently close to standard FORTRAN to
make possible the use of much existing software with a
minimum of modifications. The large dynamic range of
the numeric variables and the use of BCD arithmetic aids
in reducing round-off errors during computations, and
makes integer manipulations possible for values far
beyond other FORTRAN compilers. The extensions are,
in general, well thought out and implemented in a logical
fashion. The manual is well written and informative, pro-
vided some prior knowledge of FORTRAN exists. The

Lifelines/TheSoftware Magazine, May 19838

lack of double precision is somewhat limiting, although
ways exist to work around this. Execution speed is accept-
able, and final file sizes are very compact. Part of this can
be attributed to the use of a separate run-time package,
but even considering this, the size of the NEVADA FOR-
TRAN program when compared to other compilers is
significantly smaller.
The runtime error recovery and post-mortem variable

dump verb provide excellent debugging support, as does
the free format output verb. Compilation speed is slow,
since after the FORTRAN compiler is finished, the as-
sembler must do its work, but this can be borne. This com-
pile pause gives dedicated programmers time to prepare a
cup of tea (or coffee, if that's your poison).

The assembler is acceptable, once one becomes accus-
tomed to the input format and the fact that you must use
the RUNA command to execute your program, at least the
first time. The assembler was turned loose on the SETIO
program previously described, and passed with flying
colors after leading tabs were removed from the input file.

Final Words

STOP 'READ FILE ERROR'

LOOK FOR ALL THE EIGENVALUES

EVAL = RC

INITIALIZE THE EIGENVALUE ARRAY

DO 100 1 = 1,10
EIGVAL(I) = 0

PRINT THE INPUT ARRAY

WRITE(l,300)
FORMATflNPUT ARRAY IS:')
DO 112 1 = 1,RC
WRTTE(l,310) (INP(IJ),J = 1,RC)
FORMAT(F10.2)
CONTINUE

CALL THE EIGEN SUBROUTINE

CALL EIGEN(INP,EIGVAL,RC,EVAL)

PRINT THE ANSWERS

WRITE(l,200)
FORMAT/'COMPUTED EIGEN VALUES

ARE:')
WRITE(l,202) (EIGVAL(I),I = 1,RC)
FORMAT(F10.6)

CALL EXIT
END
X,B,E
SUBROUTINE EIGEN(A,E,N,NEV)

THIS SUBROUTINE COMPUTES THE
EIGENVALUES FOR THE N X N INPUT
MATRIX A().
THE CALLING FORMAT IS:

CALL EIGEN(A,E,N,NEV)

WHERE A IS THE NX N INPUT
MATRIX,

E IS THE (NEV) MATRIX
WHICH RETURNS THE
COMPUTED
EIGENVALUES,

N IS THE DIMENSION OF
THE INPUT MATRIX,

NEV IS THE NUMBER OF
EIGENVALUES TO
COMPUTE,

n
n

n
g

s
C

O

T—
Iu

u
u

n
o

nIn general, I would consider this to be an excellent FOR-
TRAN, especially for the purchase price. I would like to
take this opportunity to thank Ellis Computing for taking
the route of reducing prices of mature software. I think
that this would encourge the use and dispersion of pro-
grams written in their languages, and the temptation to
provide copies to friends (freely granted by Ellis Com-
puting) is greatly offset by the fact that the final cost of
photocopying the manual will come perilously close to
the $29.95 a real manual and disk costs.

200

202
C

OPTIONS
OPTIONS X,B,E
C
C TEST DRIVER FOR THE EIGEN SUBROUTINE.
C THIS VERSION IMPLEMENTED FOR NEVADA
C FORTRAN.
C

REAL INP(10,10),EIGVAL(10),B(10),C(10),
X P(10),Q(10),R(10),W(10),Y(12),IN(10)

HAVE TO DECLARE THE WORK ARRAYS
AS COMMON SINCE THEY ARE NOT
PASSED AS ARGUMENTS IN THE
SUBROUTINE CALL.

COMMON /ARRAYS/ B,C,P,Q,R,W,Y,IN
C

INTEGER EVAL,RC,XC
C

CALL OPEN(4,ARRAY.DAT)
C

READ(4,700)RC,XC
700 FORMAT(2(I2))

DO 716 1 = 1,RC
READ(4,705,END = 95,ERR = 720)

(INP(IJ),J = 1,RC)
705 FORMAT(F10.2)
716 CONTINUE

GO TO 95

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u

u
u

o
u

c

REAL A(10,10),E(10)

DECLARE COMMON ARRAYS TO
ACCESS DEFINED ARRAYS FROM MAIN
ROUTINE

(continued on next page)
9Lifelines/The Software Magazine, Volume III, Number 12

COMMON /ARRAYS/
B(10),C(10),P(10),Q(10),R(10),W(10),Y(12),
IN(10)

INTEGER AG,N,NEV,NVEC
REAL KAP, NORM, LAMBDA, L,MULT
LOGICAL FIRST,IN
NM1 = N - 1
NM2 = N-2

BEGIN THE REDUCTION TO
TRIANGULAR FORM. THE ORIGINAL
MATRIX IS DESTROYED IN THE
REDUCTION. THE DIAGONAL
ELEMENTS OF THE TRANSFORMED
MATRIX ARE STORED IN THE ARRAY C()
AND THE OFF-DIAGONAL ELEMENTS
ARE STORED IN B(). THE DIAGONAL
ELEMENTS OF THE ORIGINAL MATRIX
ARE USED TO STORE THE ALPHA
VALUES, WHILE THE SUB-DIAGONAL
ELEMENTS HOLD THE VECTORS W.

IF (N.LE.2) GO TO 9
DO8I = 1,NM2
IP1 = I + 1
SS = 0.0
DOI J = IP1,N
SS = SS + A(J,I)**2
S = SQRT(SS)
IF (A(IPl,I).LT.0.0) S = -S
C(I) = A(I,I)
B(I) = -S

IF S = 0 THEN ALPHA MUST BE 0 ALSO

ALPHA = 0.0
IF (S.EQ.0.0) GO TO 8
ALPHA = 1.0 / (SS + A(IP1,I)*S)
T = A(IP1,I) + S
A(IP1,I) = T
W(I+1) = T
IP2 = I + 2
DO2J = IP2,N
W(J) = AQ,I)
DO 4 J = IP1,N
T = 0.0
DO3K = IP1,N
T = T + AQ,K) * W(K)
P0) = T * ALPHA
KAP = 0.0
DO 5 K = IP1,N
KAP = KAP + W(K) * P(K)
KAP = 0.5 * KAP * ALPHA
DO6K = IP1,N
Q(K) = P(K) - KAP * W(K)
DO 7 J = IP1,N

COMPUTE THE NEW A(). BY SYMMETRY
ONLY HALF THE ELEMENTS NEED BE

DONE.

DO7K = J,N
AQ,K) = AJ,K) - (QQ) * W(K) + WQ) *

Q(K))

A(K,J) = A(J,K)
A(I,I) = ALPHA
CONTINUE
C(N-l) = A(N-1,N-1)
C(N) = A(N,N)
B(N-l) = A(N-1,N)

THIS COMPLETES THE REDUCTION TO
TRIANGULAR FORM.

WRITE(l,330)
FORMAT('TRIANGULAR REDUCTION

COMPLETE.')
WRITE(1,331)
FORMAT('COMPUTED DIAGONAL

ELEMENTS ARE:')
WRITE(1,332) (C(I),I=1,NEV)
FORMAT(4(F10.4))
WRITE(1,336)
FORMAT('COMPUTED OFF-DIAGONAL

ELEMENTS ARE:')
WRITE(1,332) (B(I),I = 1,NEV)

NOW BEGIN THE EIGENVALUE
COMPUTATIONS.
FIRST COMPUTE THE NORM OF THE
TRIDIAGONAL MATRIX.

NORM = ABS(C(1)) + ABS(B(1))
DO 10 1 = 2,N
T = ABS(C(I)) + ABS(B(I)) + ABS(B(I-1))
NORM = AMAXl(NORMT)
DO 111 = 1,N
W(I) = B(I)**2

SET K AND UPPER AND LOWER
ESTIMATES.

K = 1
U = NORM
DO 12 1 = 1,NEV
E(I) = -NORM

BEGIN MAIN LOOP

L = E(K)
LAMBDA = 0.5 * (L + U)

THE CONVERGENCE TEST
IMPLEMENTED HERE ALLOWS THE
COMPUTATIONS TO PROCEED UNTIL
THE INTERVAL (L,U) CAN BE MADE NO
SMALLER.

IF ((LAMBDA.EQ.L).OR.(LAMBDA.EQ.U))
GO TO 30

BEGIN COMPUTATIONS OF NUMBER OF
SIGN AGREEMENTS, AG.
THE ORIGINAL FORTRAN LISTING
USED A MACHINE DEPENDENT
OVERFLOW TRAP DURING THESE
COMPUTATIONS. IN ORDER TO
REMOVE THIS DEPENDENCY, I HAVE
INSTALLED A CHECK AGAINST A

Lifelines/TheSoftware Magazine, May 1983

n
n

n
n

n
n

n
n

n
n

3
S

u
u

u
u

fJ

u
u

u
P

riu
u

u
u

u
u

u

u
u

u
u

u
u

u
u

u

LARGE VALUE FOR RE-SCALING
OPERATIONS.

AG = 0
I = 1
S = C(I) - LAMBDA
IF (S.GE.0.0) AG = AG + 1
IF (S.EQ.0.0) GO TO 20
1 = 1 + 1
IF (I.GT.N) GO TO 22

THE LINE BELOW CHECKS FOR
POSSIBLE OVERFLOW DURING THE
DIVISION. IF OVERFLOW WILL OCCUR,
TREAT S AS ZERO.

IF (ABS(S).LE.lE-6) GO TO 19
S = C(I) - LAMBDA - W(I-l) / S
GO TO 18

GET HERE IF OVERFLOW IS POTENTIAL.

AG = AG + 1
I = 1-1
1 = 1 + 2
IF (I.LE.N) GO TO 16

THE COMPUTATION OF AG IS

n
«

n
n

n
n

g

n
n

n
n

£

£

COMPLETE. ADJUST THE INTERVAL.

IF (AG.GE.K) GO TO 24
U = LAMBDA
GO TO 14
L = LAMBDA
M = MINO(AG,NEV)
DO 26 1 = K,M
E(I) = LAMBDA
GO TO 14

THE KTH EIGENVALUE IS COMPUTED.
STORE IN E(K) AND PROCEED.

E(K) = LAMBDA
K = K + 1
IF (K.LE.NEV) GO TO 13

THIS COMPLETES THE EIGENVALUE
COMPUTATIONS.

WRITE(1,355)
FORMAT('COMPLETED EIGENVALUE
COMPUTATIONS.')

RETURN
END

u
u

u

u
u

u
u

u
u

u

u
u

S

8
u

u

STOK SOFTWARE, INC.
Humanizing the Computer

/ PROF EASY >
WE LOST THE
MASTER FILE'

BACKS UP ANY HARD DISK TO
FLOPPY DISKS AND ALLOWS

SIMPLE RESTORATION LATER

Back Rest
Hard Disk

Backup,
Restore
and more!

Put your knowledge of your office environment into your computer so
that your personnel will be properly guided in your absence.

STOK PILOT is a control language that allows easy development of a
menu driven environment as well as an on line instructional utility for any
CP/M or MP/M application. It can guide the user through an entire
process without requiring the user to enter cumbersome system com-
mands, hence making the system transparent to the user.

STOK PILOT can chain to any “COM” file program, or series of
“COM” files, and regain control when the last program ends. This, and
other unique features make it easy to design complete turnkey systems.

Disk and manual - $129.95. Manual alone - $14.95. • Incremental and Full backup.
• True copying of random files.
• Split large files if necessary.
• Migrate or delete selected files. $99.95
• Automatically restore bad files.
• Print Management reports.
• Requires CP/M 2.2, CP/M 3 or MP/M.

VISA MasterCard THE
RANDOM in
HOUSE

SuperDO & SuperSUB - $29.00
SuperDO allows the CP/M operator to type a string of commands that will

execute one at a time. So you can walk away for a while and let your
computer do its thing. Example:

A> DO ASM PROG1; LOAD PROG1; ASM PROG2; LOAD PROG2;DIR

SuperSUB is an enhanced SUBMIT command that will run on any stan-
dard CP/M 2.2 system. It runs faster than SUBMIT because it buffers the
commands in memory.
Random House and the House design are TM of Random House, Inc. CP/M - MP/M are
TM of Digital Research, Inc Dealer inquir ies invited.

ELECTRONIC
THESAURUS®

Stok Software Inc.

17 West 17th St.
New York, NY
10011
212/243-1444 $140.00

(continued on next page)
11Lifelines/The Software Magazine, Volume III, Number 12

feature Math* Reviewed

by Robert P. VanNatta
A program appearing lately on the market is a product
called MATH*. If you think that this product probably has
something to do with some more famous 'STAR' products
you are half-right.
It is not a MicroPro product, and if MicroPro thinks they
own asterisks as well as Stars as part of their trademark,
this product may make some money for the lawyers. Ac-
tually, the product is identified as a product of Force Two,
Ltd. and is distributed by Lifeboat Associates and (I think)
others.

By contrast CB-80 BASIC compiler programmed as
follows:

print 429981696 * 429981696
print 184884258895036416 / 429981696.1313
print 429981696.1313 * 42998169

generates the following responses:
a. 1.84884258895E 17
b. 429981695.869
c. 1.84884256372E 16

The comparison is interesting. On the first equation
Math* appears to edge out CB-80 on accuracy. MATH* is
correct and CB-80 has truncated the six least significant
digits.
But look at the next two! Math* completely falls apart. On
the second one, it puts the decimal point in the wrong
place and doesn't give a word of warning. Similarly the
third equation which ought to be the proof of the second
equation goes completely bananas.
Paragraph 3.6 of the documentation states as follows:

"Math* automatically rounds and reduces numbers
internally so that the results will fit in 19 digits. This
feature is beyond user control."

Elsewhere, you are told that entry of numbers of more
than 19 digits, or attempted answers of more than 19 digits
length will generate an error message.
In fairness, I must confess that I am not sure that I have a
whole lot of use for calculations using numbers as large as
appear in these examples. I am irritated, however, that the
documentation would lead you to believe that you can ex-
pect the correct answer to all math problems if the answer
is less than 19 digits.

Documentation
The Documentation consists of 10 pages with a table of
contents at the beginning and an index at the end.
Unfortunately, the table of contents and the index are the
strong points of the manual. I am satisfied that it is not
deserving of the 'good' rating assigned by Infoworld. The
problem that bothers me in rating the manual is the
feeling that I don't know for sure what a manual ought to
contain. If you believe that a manual is adequate if it
describes how to use a product in a brief and concise
fashion you will be happy with this manual. I think any-
one can learn to use Math* in about five minutes, and a
lengthy manual would only slow up the process.
The first five pages of the manual contain installation
instructions and some misleading specifications of the
program's abilities. Pages 6 and 7 describe the basic math
functions and provide examples. Pages 8 and 9 tell how to

In actuality, it is an overgrown patch for MicroPro's Word-
Star designed to give WordStar crude mathematical capa-
bilities. It comes in a 28k file called MATH.COM. This
single file is an install routine and patch combined.
The installation routine is menu driven and can be ac-
complished by a monkey in five minutes or less. The first
question asks you to verify that you really want to pro-
ceed; the following four questions ask you to identify the
source and destination file names and drive numbers.
The result is a new WORDSTAR root file which has grown
to 22k in size. Once installed, the MATH.COM file can be
discarded and the patch becomes self-contained baggage
that loads as a part of the WordStar root.
I have waxed hot and cold on the product since I have had
it, and frankly, can't fully make up my mind whether I love
it or hate it. InfoWorld (September 20, 1982) got the first
review that I have seen in the trade press. Their writer
tested it on an Osborne and gave it a 'GOOD' everything
rating. I did my testing on a TRS80 Mod II and also on a
TRS80 Model 16, and I shall presently tell why my feelings
are not so bland.

What It Does
Math* is designed to permit you to type simple mathe-
matical equations on the screen in a format (either vertical
or horizontal) that a grade-school student would use.
When you are ready for the answer you type a ~M in the
location of the desired answer, and, presto, the correct
answer will appear.
By way of example, if you type 2 4- 2 = and then the magic
control sequence (a 7 Eh followed by an upper or lower
case zm') the answer will be substituted for your control
sequence.

All four basic math functions are supported: add, sub-
tract, multiply, and divide. All numbers are limited to a
maximum length of 19 digits. The following demonstrates
the precision of the calculations:

a. 429981696 * 429981696 = 184884258895036416
b. 184884258895036416 I 429981696.1313 = 42998169
c. 429981696.1313 * 42998169 = 41681563437832.523

Lifelines/TheSoftware Magazine, May 198312

to Math* and the "IMPROPER NUMBER" error message
displays. There is no technical information provided
about the inner workings of Math* but I suspect that it, in
fact, literally 'reads the screen' in order to find the
equation for the calculation, and my video board prevents
this from working.

Regardless of whether my 'screen reading' theory of op-
eration is correct, it defines another major limitation of the
program. This limitation is documented but still serious.
It is required that all figures that are to be part of the
equation be actually displayed at the time the calculation
is attempted.

My first impression of Math* was that its principal utility
would be adding long columns of numbers in business
reports. My enthusiasm waned a bit, however, when I
found that you had to get all the numbers on the screen at
the same time. It cannot even handle adding numbers
which are concealed by the help menus.

Similarly, display items which are generally invisible to
WordStar will cause erroneous results without warning.
For example, the WordStar page break display will befud-
dle Math*. The manual doesn't tell you that, but if you
attempt to add a column of figures which is interrupted by
the page break display, the figures above the display will
be ignored.1

Memory Requirements
The manual successfully avoids any mention of the possi-
bility that Math* might have some memory requirements.
It, in fact, does. Specifically, Math* is loaded in memory at
4500h. This is quite a way above the normal end of the
WordStar root file. I assume the blank space in the middle
is used by WordStar to hold its overlays and the like. As
nearly as I can tell, the memory area at 4500h and above is
normally used by WordStar for storage of the document
being processed.

I expected, and was able to confirm by actual testing, that
the dynamic storage area available for document storage
was reduced by the installation of Math*. On a 64k system
I calculated the reduction of free storage area to be about
9%. This does not prevent the operation of WordStar since
WordStar automatically creates workfiles as necessary
when a document won't completely fit into memory, but
is an indication of a modest increase in disk activity when
large files are being processed. The work that I have done
has all been on high performance eight-inch systems and
on such a system, the loss of performance is not notice-
able; but I suspect that on those low performance systems
it would be one more stone to bear.

It occurred to me while making those observations that
this problem would be aggravated on systems which must
run on less than 64k of memory. I don't actually have a
smaller system, but believe I can emulate one for testing
purposes. I used MOVCPM to construct a 48k system,
which I then booted. The result was that the regular
WordStar worked (MicroPro says it will run in 45k);
however, when I attempted to load WordStar with Math*
on its back, WordStar crashed with an out of memory
error. It is my notion that this is a reliable indication that if
you must run WordStar in a 48K or less system you had
best save your money and not buy Math*.

(continued on next page)

use the advanced features (these elegant commands
permit you to force the answer into a format similar to the
basic PRINT USING statement). Page 10 lists the four
error messages.

The matters just mentioned are adequately described and
unless you would downgrade the manual for claiming an
accuracy level beyond the truth, the manual is excellent.
Unfortunately, I personally conclude that the manual
ought to have more technical information and that it is,
therefore, 'POOR'.

First off, from reading the manual there is no way that you
can come within a mile of telling whether this product will
even work with your particular computer configuration.
You are told in the manual that the product is written in
Z-80 assembly language and requires a Z-80 processor.
You are also told that it may not work if you have custom
console drivers. Other than that, you are on your own.

I understand all this to mean that if your computer is
based on an Intel 8080 chip you are out of luck. I know not,
however, what the score is with respect to the 8085 chip
which some of you have. (Ed. Note: The 8085 will not
work either.)

More frustrating than that is trying to figure out what a
'custom console driver' is. I first, blandly, assumed that
this term referred to those exotic computer systems that
were not included on the WordStar menu installation list.
I quickly found out that was wrong. I next dumped Math*
under DDT and found that it was apparently accessed by
means of a JMP instruction patched at 02C0H, which is a
WORDSTAR reserved location for optional user console
output routines.

Then, thinking that I was a 'certified smart guy,' I exam-
ined my version of WordStar only to find that this location
was, in fact, unused. Frustration! The long and short of it
is that Math* won't work on either a Radio Shack Mod II or
16 with Pickles and Trout CP/M or with this same equip-
ment using Lifeboat CP/M if you use the MicroPro menu
installation routine intended for that product.

Fortunately for this reviewer, Lifeboat CP/M happens to
emulate an L/S ADM 31 terminal, and WordStar will work
on the Radio Shack equipment under Lifeboat CP/M if
installed according to the ADM 31 terminal conventions.
The difference is that one drives the memory mapped
video board and the other bypasses the video board and
gives you the less desirable serial terminal effect. (Ed.
Note: Lifeboat recommends installing as TRS-II under the
FMG option, rather than as ADM-31.)

I believe that a minimum attribute the manual should
have is a list of computers whose names appear on the
WordStar installation list with which this product won't
work. I have just listed a couple of pretty significant ones,
and I assume there are others. From my narrow experi-
ence I assume that Math* simply doesn't like video boards
but I can't tell for sure.

The manual also suggests that the installation routine will
sort out those unacceptable terminals and abort the in-
stallation. I did not find this to be the case. On my
equipment, the installation routines worked fine and
reported a successful installation. The problem is that
when I use the video board the equation seems 'invisible'

Lifelines/The Software Magazine, Volume III, Number 12

For lack of anything else to do, I also constructed a 52k
system and found that Math* would run in 52k, but that it
caused a 25% reduction in dynamic storage area.

Other WordStar Accessories
Math* appears to be compatible with both MailMerge and
Spellstar; however, the latter generates an irritating
display of the Math* copyright notice when you reload
WordStar.

Patches and Improvements
The word 'extention' (sic) is displayed twice in the installa-
tion routine. I would personally prefer that 'extension' be
spelled in the conventional manner.

If Math* is installed, you get the disgusting opportunity of
watching a Math* copyright notice roll onto the screen just
ahead of the WordStar copyright notice. Math* accom-
plishes this by using CP/M function 9 to print a string of
line feeds to the terminal. This is a method of clearing the
screen that will work on nearly any terminal, but I don't
have to like it. This infamous string of linefeeds is found at
4500h. If you are even slightly inclined to use DDT, I
would urge a patch beginning at 4500h which included
first your terminal clear screen code and then a '$' (the
dollar sign is the standard CP/M end of string flag). This
will clear the screen and avoid the tedious display of all
the line feeds.

The other thing that needs attention is the control
sequence for invoking Math*. As mentioned earlier, this
requires a ~M to accomplish. (Ed. Note: A more recent
version allows the tilde to be replaced by the user's choice
of lead-in.) I, at least, wonder how many terminals lack
the key altogether. In any event, it is a relatively incon-
venient CTRL 6 on my Radio Shack. The 'M' which must
follow may not be a CTRL M. This convention deviates
from the WordStar convention for two-key sequences in
that all WordStar two-key sequences will accept a Control
character after the lead-in character. I had hoped to find
this control sequence in the WordStar jump table which is
used to define all of the regular WordStar function keys. If
it had been there, it would have been a simple task to
redefine the codes. Unfortunately, it is not. Rather, it
seems to be thoroughly buried within Math* itself and no
obvious way exists to modify that code.

Expect Math Functions to be Standard
I can't help but think that math functions will soon be
standard features on most word processing programs.
Math* disappointed me because I had hoped for more.
Objectively, it is impossible to say whether Math* is good
or bad. It is the first creature of its kind on the market. For
this reason, there is no standard by which to judge this
product. It may well be that this represents the best
possible math program which can ever be grafted onto
WordStar. The heritage of WordStar can be traced,
through WordMaster, to its origin as that ubiquitous line
editor ED.COM. The heritage is that of a program writer,
molded into a word processer. I am relatively certain that
the idea of making WordStar add and subtract was not in
the design criteria around which it was written.

The first fellow who writes an easy-to-use program that
combines the features of a good word processing program

with the features of a good spreadsheet is surely going to
get very rich. (Ed. Note: Consider T/Maker III, soon to be
reviewed.)

Conclusions
A word processer that can add should not be expected to
replace a spreadsheet program. If it has a place at all, it
should be at home in an office where financial reports are
so occasionally prepared, that a spreadsheet is not fea-
sible. In order to be cost effective, the math function
would have to be versatile so as to permit removal of the
ever present adding machine. At the same time it must be
a sufficiently natural extension of the word processing
package so as to not present a training headache.

It is my assumption that if number crunching is the rule
rather than the exception, WordStar would be abandoned
altogether for a spreadsheet of some kind.

In terms of ease of use, Math* clearly meets the criteria of
being a natural extension of WordStar. Someone who
already knows how to use WordStar should be able to use
Math* with minimal difficulty after about five minutes of
training. The more serious question revolves around
whether Math* is sufficiently flexible so as to permit the
occasional report writer to scrap the adding machine. In
this respect, Math* fails, in my opinion, for the following
reasons: 1) columns of figures to be added must all be on
the screen at once; 2) WordStar page break display inter-
feres with column adding; 3) no more than a single blank
line is allowed in a column of figures; 4) there is no visual
confirmation of the figures which Math* considers to be
part of the equation; 5) the overflow trapping where over
sized numbers are used needs to be improved.

If you are a grade school student wanting to do your
homework, Math* would appear to be almost as conveni-
ent as a pocket calculator; but I fear that it would fail to
help in preparing even the simplest profit and loss state-
ment, or expense account itemization.

Add Some Horsepower
Math* in my opinion needs to trade a little of its ease of use
for horsepower. As a long time WordStar user I am
accustomed to marking blocks and columns before I do
something with that block or column. Math* unnerves me
just as WordStar would if it somehow permitted you to
move blocks without marking them first. The usefulness
of Math* would be greatly enhanced if a calculation field
could be defined and highlighted with the block markers
tKB & tKK* 2 Then, if a calculation could be made which
would include all numeric values within the block thus
defined, irrespective of whether it was on the screen, I
would throw my adding machine out the window, call my
friends and tell them to buy the product at once, and write
a rave review. As it is, I can only yawn. H

FOOTNOTES

irThis limitation can be 'worked around' by hiding the
page break display.

2WordStar version 2.26 cannot mark a column; its use
would be precluded.

Lifelines/TheSoftware Magazine, May 198314

A Comparison of C Compilers

by Bruce Hunter
C roots go all the way back to 1970 when Ken Thompson, a
principle architect of Unix, wrote a new language called B,
based on Martin Richards' BCPL. B was a small typeless
language. Dennis M. Ritchie, a co-worker of Thompson's
at Bell Labs, completed the metamorphosis of B into the
very remarkable language we all know now as C. C,
particularly its development, cannot logically be
separated from Unix. Ken Thompson started the
development of Unix in '69, and by '72, with the aid of
Dennis Ritchie, Unix was a reality. C and Unix were,
therefore, developed side by side. The operating system
and the language were the product of programmers,
intended for use by programmers.
Until recently, Bell Labs was forbidden by its corporate
charter to produce software for profit. As a consequence,
Unix and C were not released as a commercial venture. In
1975, Version 6 of Unix was released, primarily to
universities and other non-profit organizations. The
world outside Bell was quick to recognize an exceptional
system and language. By 1978, the present standard of the
language, 'The C Programming Language', had been
written by Brian W. Kernighan and Dennis M. Ritchie.
Known now as Unix 7 C, it is now the standard by which
all other versions of C are judged.
In the process of writing a book for Sybex, 'An
Introduction to C', I have reviewed over a half dozen C
compilers. As I went through each compiler, I was amazed
to discover just how closely they adhered to the definition
of the language, i.e. Kernighan & Ritchie's book, in spite of
the lack of any official "standard" by ANSI. This is
surprising, mainly because computer languages rarely
stay in a static or permanent state. They are "living"
entities from which multiple offspring are consistently
produced, and sometimes the offspring bear only a
distant resemblance to the parent language. This is
"progress", and I am not one to fight the inevitable. Nor do
I propose that creativity in any form be stifled. I merely
wish to point out that although the creation of related sets
of a language can have its decided advantages, such as a
subset of a language making that language accessible to
more people, sometimes there are disadvantages
involved such as the loss of portability in the various
"supersets" of some languages today.

To examine this point in more detail, let's briefly consider
some of the subsets of the larger languages. With 8 bit
machines still the common denominator for the "man on
the street", few can enjoy the languages written for big
machines without subsets. The most popular version of
Fortran 66 is a subset, Microsoft Fortran. PL/I has followed
in the same footsteps, and the most popular version for
micros, Digital's PL/I-80, is a subset of Subset G, which
itself is a subset of the full set of PL/I. The Department of
Defense in their definition of Ada stated that "Ada must be
Ada", meaning that only one version shall ever exist and
that version shall be the full set. But before DOD was even
finished fully defining the language, two subsets were

available for sale to the micro world. There are only
benefits and no problems to these subsets as long as the
subsets are upward compatible.

However, let's look at this phenomenon in reverse, the
'supersets'. The original definitions of two famous
languages, BASIC and Pascal, were teaching languages
that were small enough to be learned by novice
programmers without inflicting too much pain in the
process. BASIC and Pascal are marvellous teaching
languages, and they are very pleasant vehicles on which
to learn programming. What has happened, however, is
that once having learned these languages, the new
programmers were no more ready to give up their original
language than Linus was to give up his blanket. The result
has been the creation of larger and larger sets of the
original languages to make up for their original
'shortcomings'. By "shortcomings" I don't mean to sound
snobbish; I mean they lacked specific programming tools
like pointer handling, data structures, etc. There is no
harm in the creation of supersets in an insular
environment. It's delightful to see the ingenious creations
that have arisen from the original, like Pascal MT+.
Unfortunately, the moment a programmer starts to
program for others, portability becomes a necessity, and
supersets have no portability. Try to compile an MBASIC
compiler program on a CBASIC compiler, and watch the
syntax errors fly.
The problem here is this: who is going to define an
enhancement to a superset? Without a defined language
standard, there can be no hope for portability, and with
no portability, the programmer is limited as to his options
which are already limited by the multiplicity of hardware
and operating system dependencies prevalent today.

C is neither a large language a nor small one. Unix and C
were written on and for 16/32 bit machines, and today's 16
bit C's available to the public are very close to Unix 7 C. An
implementation of the full set small enough to run on a
typical 8 bit/64 kilobyte machine is almost 'the impossible
dream'. However, the majority of today's C programmers
have cut their teeth on the 8 bit C subsets, and until 16 bit
machines become the most common machine (if they ever
do), most of you will learn C on one of these subsets. As a
consequence, the 8 bit C subsets are as important to the
language as are the full set implementations as far as the
general public is concerned. And unlike other powerful
languages, like PL/I, there is a definite general interest in
C. C is for those who are progressing or who have already
progressed well beyond the beginner's stage. It's a grown-
up language enabling you to write systems level code,
filters, and get your hands right into the operating system.
It can enhance programs written in other languages and
supplement their weak points. It can save you money on
utilities by enabling you to simply write them yourself.

For those of you who are interested in purchasing a C
compiler, here are some things to consider. When

(continued on next page) 15

feature

Lifelines/The Software Magazine, Volume III, Number 12

BRIEF HISTORY OF THE
DEVELOPMENT OF SOME
8 BIT C COMPILERS

shopping for a language package, the intended
applications will dictate just how full a set is required. If
the application is to be an operating system, a word
processor, a disk utility, or the like, there will be little need
for floating point numbers, but compact object code will
be a necessity. If business, scientific, or engineering
programs are the goal, then float and double precision
and a math library are necessities, and code generation is
entirely a secondary consideration. What makes the
available C packages different are the size of the
implementation, the degree of code optimization, and the
speed of execution and compilation.
To specifics: compilers grind their way from source code
to object code in a number of passes. They pre-process,
parse, optimize, and then will or won't produce
intermediate code before generating the final binary
object code. The "will or won't" is the key. If a macro is to
be produced rather than a free standing program, it will
need to be in relocatable code, particularly if it is to be
linked with code generated by another language.
Programming utilities are a good example. Access
Manager-80, a data base creation program by DRI, is a fine
example of a series of routines to be linked to a number of
languages, and it is in relocatable code.
C packages like C/80, SuperSoft C, Q/C, and Aztec C
produce 8080 assembly. The assembly code is in turn
passed through a macro loader and converted into
relocatable format or a REL file. There are a number of
benefits to this. The code can be debugged by SID, DRI's
symbolic instruction debugger. It can be linked to
anything that is linkable under M80, Microsoft's macro
linker, or MAC, Digital's version of the same. The bad
news is that it takes a number of passes to do all these
things, so it takes longer. Consequently, when it's getting
quite late and you are getting very tired and the same
damn bug that has been plaguing the program is still there
after the umpteenth re-editing, the drudgery of parse,
optimize, macro load and link can get to be a bit much.

The flip side of the coin is a two pass system. The parser
and compiler are brought up automatically, so one
command does both jobs. The resultant code is then
linked in one pass. This means just two apparent
operations from source code to object code. BD Systems C
is a compiler of this type. What is the catch? No REL file.
The intermediate code can be linked to any other BDS C
program but not to "Microsoft compatible" programs. SID
can not be used. BDS does have a utility, however, to
produce 8080 assembly. And fortunately, the latest
version 1.5 has a debugger of its own. For most people, the
lack of REL files is more than made up by the speed of the
operation. Which of the two compilation systems
produces the most optimized code? That is a matter of
how well the optimizer has been written, not the
compilation system.

Full sets and subsets, to have or not to have, that is the
question. If money were no object, perhaps we all would
be running Unix 7 C on a PDF 11/70, and there would be
no reason for this article. If you are going to run a subset,
then the question is, how much of a subset. There are so
many things to consider about each compiler. Each has its
positive points and relative disadvantages. Here's a brief
look at the history of some of them.

Most people that have been into C for a while have
probably cut their teeth on BD Software C. The BDS C
compiler is the product of the genius of Leor Zolman.
Leor, a native Californian now transplanted to
Massachussetts, got into C at MIT in the 70's while
working in the computer science lab there. Leor has a
penchant for programming games. He discovered the
game Othello on Unix and wanted to run it on his own
micro. First he attempted to program Othello in assembly,
but finding it a pain, he wrote a subset of C to do the job.
Having a running C compiler, he realized that he had
something that just might be marketable. Lifeboat picked
up an exclusive distributership on the package for a
number of years, but now the package is also available
directly from Leor. Being the oldest C in its class, it is not
surprising that there is a BDS C User's Group. Their
software is public domain, and probably more people
have been introduced to C through BDS than any other
single version.
A totally different branch of the C tree started with Ron
Cain. Ron wrote a small set of C, aptly called "Small-C".
The source code of Small-C was published in Dr. Dobbs
Journal (No 45). Small-C, as the name implies, is devoid of
some of the Unix 7 C niceties. It does not have floating
point or long integer (and indeed, most subsets do not).
Two regrettable omissions are the case statement and
structures. Nevertheless, the price was right, and Small-C
went on to be the progenitor of a handful of other C
compilers. If you are looking for an inexpensive
introduction to the language, Small-C is available for $17
from the Code Works.
One of the extensions of Cain's Small-C is Small-C Plus,
written by Kirk Bailey. It adds some enhancements, and
it's available for $25 from Alpha Omega Computer
Systems Inc.

A BRIEF EXAMINATION OF
SPECIFIC C COMPILERS
C/80
With Small-C's source code available to all, it was
inevitable that it would be copied and improved upon.
That is the way almost anything good is created. Walt
Bilofsky of the Software Toolworks created a version of C
from Small-C that by now has little resemblance to it. Still
excluding long and float, Walt's version, called C/80,
supports just about everything in the language. Integer
only, C/80 is nevertheless a most remarkable subset of
Unix 7 C. It is a true subset with no atypical
enhancements. It includes all the storage classes,
pointers, arrays and structures. Therefore, it supports C
wildness like pointers to arrays of structures of arrays
of. . .etc. A very interesting feature offered is initializers, a
feature not found in many versions costing three times as
much. The full switch/case is there, and full buffered and
raw file I/O. Bitfields are about the only thing besides float
and long that is not present in this package. Walt's

Lifelines/TheSoftware Magazine, May 198316

A small but adequate function library is included that has
the most important functions including printf. C isn't
worth a nickle without printf. Quite interesting is the fact
that the full set of precompiler (preprocessor) commands
are included, so conditional compilation is possible.
Not K&R C, but nevertheless a viable feature of the
distribution package, is a series of functions to create and
use 32 bit unsigned long integers. A 32 bit unsigned
integer has a maximum value of 4.26E + 9 which gives
accuracy well into the billions and a precision of 9 digits.
An entire math package is furnished with it.

Infosoft's package includes its own linker and debugger.
Besides a manual, a language reference guide is included
as well. It is noteworthy that Infosoft has written a
number of operating systems, both single user and multi
user, as well as programming utilities, an editor, and the
like.

SUPERSOFT C

SuperSoft C is a serious C compiler with versions for 8080,
8086 and Z8000. Its roots are straight Unix 7. It also does
not support long and float. Conditional processor
commands are not supported, and the package does not
include typedef, bitfields, and static storage. Also,
SuperSoft does not have a macro assembler or linker. It
assumes, perhaps correctly,, that most users of a $250 C
package will already either own Microsoft's M80 and L80
or Digital's Mac and Link. If a purchaser of the package
did not have a macro linker (borrowed from some other
legitimate language package or purchased separately), he
can always use ASM.COM. The only problem with using
ASM.COM with C packages is this: the only way macros
can be handled is by preprocessor inclusion or cut and
paste assembly, the first being disk space intensive and
the second tedious.

The good news about SuperSoft is a fine function library,
larger than the library functions described in K&R. It is
not only Unix 7 compatible, but it has good compatibility
with BDS C as well. SuperSoft developed their C as a tool
for the development of other language and utility
packages. The first two compilation passes of the
compiler are the parser and the optimizer. This involves
an extra step for the operator, but its stated purpose is to
produce tighter code. The actual linkage of the code can be
repetitive and tedious, but the use of the CP/M Submit
facility takes most of the fuss out of it. I have never had a
great deal of luck with Submit files, so what I did was
compile under MicroShell using its shell file. When this
package is used with M-80 or Mac, the code produced
comes out as REL files. This allows the creation of a library
of macros that are compatible with any other language(s)
that use REL code. The SuperSoft compiler has a couple
of pages worth of compiler switches to aid in debugging
with or without SID or DDT. They have a good support
group as well. SuperSoft runs around $250.00, available
from SuperSoft Associates.

BDSC

BD Software C, aka BDS C, is one of the oldest of the eight
bit C's, and this package* has been around long enough to
have the bugs worked out of it. One of the most

(continued on next page) 17

package comes complete with his own assembler which
produces 8080 assembly. Walt's C/80 compiler is
remarkably efficient, doing compilation faster than any of
the tested 8 bit compilers with the singular exception of
BDS. The entire package works well and quickly, and it
produces remarkably tight object code, which means a
great deal of work has gone into optimization. You need to
supply the linker and macro loader or use ASM.COM,
however (you need to do this with SuperSoft as well). The
only shortcoming of C/80 is a good but limited function
library. The library has all those functions necessary for
basic I/O and even formatted output. Alloc is included as
well. Past that you will either have to create your own or
borrow public domain library routines. The most
remarkable thing about C/80 is its price, $49.95. Dollar for
dollar, this has got to be the best bargain in computerdom.
C/80 is available from the Software Toolworks out here in
the LA smog. Other features of the subset are I/O
redirection, command line arguments, programming
chaining, and a runtime trace feature to aid in hand
optimization of the code.

QIC

Another offspring of Small C is QIC by Jim Colvin. Jim is a
remarkable programmer, programming everything from
assembly to PL/I on both minis and IBM mainframes. QIC
does not support the data types float, double, and long. In ’
addition, QIC does not include cast, size of, unions,
multidimensional arrays, typedef, and #define with
parameters. Structures are being added to the latest
version 1.3 along with other enhancements. However, it
has a very fine library using generally typical K&R type
functions. One intriguing thing about QIC is that it uses a
compiler optimization technique called peep-hole
optimization. The technique involves looking at a small
section of the code as it is being generated by its assembly
instructions and comparing the instruction sets that it
generates for the most efficient. It is the same technique
used by Digital Research on their soon to be released C
compiler. Its effectiveness is undisputed since QIC
produces some of the smallest code of the C's, along with
C/80. The package comes complete with a bound 137 page
manual of excellent readability and quality. There is a
chapter on compiler internals, and here's another unique
feature: the full source code to the compiler is included!
Priced at $95, it is available from the Code Works.

CW/C
Unfortunately, I did not personally examine this C, but it
is also available from the Code Works for $75. It is a larger
extension of Small-C including structures, unions,
multidimensional arrays, #ifdef, etc.

INFOSOFT

An extremely powerful C package for the money is
Infosoft's C. It is an integer only implementation (like
most 8 bit C's) that has most of the Unix 7 features. The
only features of Unix 7 C that are missing (besides float,
long, etc.) are bitfields, casts, register and typedef. All of
the C operators are supported, extern and static as well.
Initializers are allowed in all but a few odd circumstances.
Lifelines/The Software Magazine, Volume III, Number 12

as I have encountered. It has everything from Unix 7 with
the exception of bitfields. The system produces 8080
assembly and as such is compatible with the
Digital/Microsoft family of programming utilities, M80,
L80, MAC, SID, DDT and the like. It has its own assember
and linker, and both are easy to use. Producing an ASM
file upon linkage, it is a little slow, as are all of this type,
but it runs much faster and easier than some. The best
news here is, of course, the inclusion of float, long and
double. It is an integral part of the compiler, and not one of
the function packages. To support its math potential there
are nearly two dozen math, log and trig functions. Aztec
has a good function library that is well rounded and
essentially Unix 7 plus. Aztec C is available for $195 from
Manx Software Systems.

TELECON SYSTEMS C

This C is available for 8080, 8086, PDP-11 and 6809. The
8080 version comes both with and without float (although
double is not implemented at this time). It is very close to
Unix 7 C, supporting just about everything but bitfields.
Like many C compilers, it allows assembly to be
intermixed with C source code before compilation. The
function library is not one of the largest, but is essentially
Kernighan & Ritchie with the usual printf, strcat, and the
like.

The compiler produces 8080 assembly, and no linker is
furnished.
Like SuperSoft and Q/C, it is assumed you will either own
M-80 and L-80 or you will cut and paste using ASM.COM.
Unfortunately I did not have the documentation available
at the time of this writing and therefore can't list all the
features. Dan Roady of Telecon gave me a Sieve run time
of 17 seconds on a 4 MHz Z80. A very respectable time,
although I suspect the code was optimized. The integer
version is $200, float $350, versions other than 8080 run
$200 to $500.

WHITESMITHS' C

Whitesmith's C has been around long enough to be a C
staple. At $600 and up, it is far from being the most
popular of the C's. However, it was the first C offered in
eight bit to have a nearly full implementation. In fact, its
compiler will support just about every feature of Unix 7 C.
However, it uses its own intermediate code called A-
Natural. Not only is it not compatible with
Microsoft/Digital 8080, but is unbelievably slow to
compile and link, not to mention complicated. The library
function tends to be a bit different as well. Many of K&R's
functions are intact but the remainder of the functions are
atypical for the main body of C. Thus, because of the A-
natural generated code and some of the atypical though
ingenious functions, portability with other C's has been
lost. Whitesmiths' C is available from Whitesmiths, Ltd.

TINYC

Tiny C is literally in a class by itself. It is a small C-like
language package that has both an interpreter and a
compiler. The package is one of the most complete in "C-
dom". It has its own text editor (PPS), a C interpreter AND
its source code, a C compiler, sample programs, and 384
pages of the most voluminous documentation in the field,
over half again as long as the book that defined the

Lifelines/TheSoftware Magazine, May 1983

remarkable things about BDS C is its one pass compiler
system. Once the compiler is invoked, it does all the
housekeeping of parsing and optimization without any
further operator intervention. The linker provided with
the package also is a one pass proposition. No need for
submit files, it is the fastest of the C's to get source code up
and running. Compile and link time is measured in
seconds, not minutes. The bad news, REL file are not
produced, the intermediate code is in the form of a CRL
file. On the other hand, there is nothing in BDS C that I
have ever encountered in the way of a disadvantage for
which Leor or one of his many friends and supporters
have not written a function or utility to overcome that
disadvantage (including float and initialization). CASM.C
is a program written specificaly to produce ASM code.
Anything that produces ASM code will produce
relocatable (REL) code.

Like any of the larger implementations, BDS takes up the
biggest part of two distribution disks. The function library
is enormous. There is literally something for everyone.
Groupings of math functions are available for float, trig,
log, etc. It is not "legitimate" C float, so don't use them if
you are interested in portability and Unix 7 initialization.
Short of that, however, BDS will do about anything. Most
code written in BDS is written with portability in mind,
and as long as it is integer, it will run on Unix 7 C
compilers. If there is a larger function library than BDS
C's, I am unaware of it, although a 16 bit implementation,
C86, comes close with almost 100 functions. A large
number of software packages in today's marketplace like
MicroShell, Mince, Scribble, and on and on have been
written in BDS C. That in itself is enough to speak for the
package. The newest version (1.5) has a nearly all new
documentation package that is well written by Leor
himself and runs close to 200 pages. Loor's function
source code is a part of the distribution package which is
handy for both fellow programmers and for an
unscrupulous few that have felt free to rip him off. Loor's
feeling about this is that he wishes that they would at least
give him credit, as they well should. Leor Zolman has
probably done more for C than anyone this side of Dennis
M. Ritchie and Ken Thompson.

BDS C is available from Lifeboat Associates, the original
distributer, from Leor Zolman, and from Dedicated Micro
Systems. Updates are available to legitimate owners from
CUG, the C Users Group, at $8 for the disk. BDS C runs
around $150.

CAVEAT EMPTOR

Caveat emptor, or "let the buyer beware", is just as
important a point to consider in choosing software as any
other feature, and that is why I'm putting this right in the
middle of this comparison. I'm sure all of you are aware of
the potential pitfalls of buying software. For one thing,
you want to be prepared for a few snags when you buy the
very first versions of anything; they tend to have more
bugs than a compost heap. There are exceptions,
especially with companies who spend a lot of time
and money beta testing their products, but a hearty dose
of skepticism in evaluating various claims made by
software houses can save you a lot of grief.

AZTEC C
Aztec C II is just about as full an eight bit implementation

the 8080 version may not sound glamorous at first,
remember this would be the only full 8 bit C available with
the exception of Whitesmiths.

LATTICE (8086/8088)

Another very outstanding 16 bit C is Lattice C which is
K&R C just about to the letter. Any deviations from the
definition of the language found in Appendix A of
Kernighan and Ritchie are so small as to be insignificant.
Whereas 8 bit C's tend to be somewhat of a free-for-all
when it comes to what will be implemented and what will
not, CI-C86, Lattice, and Digital work very hard to
maintain "to the letter" C compatibility. The library
functions furnished with Lattice are classic C offering full
compatibility with the mainstream of C functions. There
are 150 total functions if the special functions peculiar to
the IBM-PC are included.

The package comes with a well written and organized
manual, the manual and the compiler both being the
work of Francis Lynch. It is quite technical, and it seems to
have left 'no stone unturned'. A second manual
whimsically called "The C-Fdod Smorgasbord" contains a
multitude of functions and macros for all sorts of things.
Decimal (BCD) arithmetic can be done with a separate
package that is part of the "Smorgasbord". The package
will do floating point decimal work while maintaining a
precision of 16 significant digits (a great help when
working on the national debt). The precision of the main
package is 6 to 7 figures for float and 15 to 16 for double.
Float as handled by this special package is done in the
form of a character array, not dissimilar to Leor Zolman's
BD Software C. Like BDS C, the functions used with the
floating package are peculiar to the package and are not
main-stream C. Additional functions and macros
furnished with the Smorgasbord are console and list
device I/O functions, IBM-PC BIOS interface functions,
and a very interesting package to interface the myriad of
terminals whose manufacturers seemingly have taken
such great delight in making them incompatible with
each other. The last package is a potpourri of
miscellaneous functions and tools.

Lattice is of mini-computer descent. Originally written for
General Automation, it was recoded for the 8086 in both
an MS-DOS version and a CP/M-86 version. It supports
the 8087 math processor, and like all 8087 language
versions will simulate the chip if it is not present. The
price of this very complete package is $500 for the MS-
DOS compiler and $150 for the Smorgasbord. Available
from Lifeboat Associates.

DIGITAL RESEARCH

At the time of this writing, Digital Research has gone into
beta testing with their own C. The compiler was written
by Michael Lehman, DRI's director of Research and
Development, and author of Pascal MT + . If you have ever
had the pleasure of working with Pascal MT + , you will
know the potential quality of work involved. DRI's C is
billed as Unix 7 with no excuses. All code tested on the
new implementation was run against Unix 7 C on a DEC
PDP 11-70, and the new compiler was modified until
identical results were produced. It's a most commendable
undertaking. Like SuperSoft, DRI developed C for the
purpose of developing their own software on it. Lehman

(continued on next page) 19

language.
Since I have taken the attitude that if it is not within K&R's
definition of C, it is not "C", C-like is an apt description of
Tiny C. It is very close to a small set of C like Small C, C/80,
etc., but with important syntactic differences. Some
examples are the use of brackets [] instead of braces to
delimit blocks and the absence of the semicolon statement
terminator. The function library has C's getchar and
putchar, fopen, fread, fwrite and fclose, giving it the very
basics of C I/O. The remainder of the functions are
atypical to C proper, but still have their C equivalents. For
example, gs is equivalent to gets, ps to puts, nim to atoi,
etc.
On the other hand, it is hard to imagine a friendlier way to
get an introduction to C, particularly if the would-be C
programmer is new to structured languages, for Tiny C
has a user friendly, interactive interpreter and plentiful
documentation. Once the Tiny C interpreter has been
mastered, then the compiler can take the programmer
one step closer to Unix C. A very small version of the Unix
shell called "tiny shell" handles redirection by way of the
standard < and > shell operators. A few Unix-like tools are
also provided. For the serious hobbyist who wants to get
into C, the availability of the source code of the interpreter
will keep him busy learning and, if so desired, modifying
the code. The code is supplied for both 8080 machines and
the PDP-11 family. A full set of stack functions are in the
package, so system programming is a natural. The price is
$100 for interpreter source and object code, $250 for
compiler object code, available from Lifeboat Associates.
I have concentrated on 8 bit C's because I feel that the 8 bit
user is still in the vast majority today. However, Unix 7 is of
16 bit parentage, and things like type long are extremely
difficult on 8 bit. The 16 bit C's offer more, then, of Unix C
than 8 bit C's. As a matter of fact, the 16 bit C's that I have
looked at so far are about as close to full Unix 7 as one
could hope for. Here's but a brief glance at three of them.

COMPUTER INNOVATIONS C86

There's not a lot to say about C86 because there's no bad
news. At least none that I've been able to discover so far.
All of K&R is supported, including the function library. It
is very very close to Unix 7 C. George Eberhart, the author
of C86 (and Tiny-C's compiler) is one of those
exceptionally gifted and dedicated individuals that has
caused the industry to grow at an exponential pace. C86
reflects this ability.
A great deal of pain went into keeping it compatible, not
only with Unix 7 C, but with BDS. There is simply not
enough in the way of praise and gratitude for software
writers who go for deliberate portability and cross use.
They make programming a pleasure. A nicety of the C86
package is the use of very long variable names. It goes a
long way towards making self documenting code.
Something to look for in 16 bit languages in general that
are running on the 8086 is support for the 8087 math
processor. This extremely powerful little piece of
hardware runs with an 80 bit word and will do number
crunching that will rival a million dollar mainframe. C86
supports this mini marvel of Intel. C86 costs $395. 1 have
been told (by George) that soon the package will be
available for most micro processors starting with the
68000. Even an 8080 version is in the planning. Although
Lifelines/The Software Magazine, Volume III, Number 12

has also used "peep-hole optimization", and unbelievably
tight object code is the result. Library functions for the
8087 math processor are part of the package. Bit fields are
supported. A very interesting enhancement of this C is
record locking, which means it maintains compatibility
with MP/M, and that means ensured file security. Like
most DRI languages, relocatable code is produced as a
part of the source to object sequence. The linker and
macro loader are part of the package.
Most of the newer C versions support command line
redirection. DRI's C is no exception. Versions are being
planned for the 68000 and Z8000. Although no 8080
version is in the planning at this time, it is hard to believe
that Digital will pass up the opportunity of the very large
8080 market which they did so much to create. Price is not
firm at this time, a nebulous 300 to 500 dollars. There is no
debugger at this time, but a Lint-like error routine is built
in. Like all DRI language division products, there is no
charge for the use of the runtime library.

Some time ago Jim Gilbreath, the head of Computer
Sciences and Simulation Department at the Naval Ocean
Systems Center, decided to compare various languages
and compilers for operational speed. To do so, he used a
program called the Sieve of Eratosthenes as a benchmark
program, a program designed to test the capabilities of a
given system. Although he probably never intended it to
become "the" benchmark, his article which appeared in
Byte Magazine, September 1981, has become a "classic". C
is one of the fastest languages run, and it also has some of
the most compact code. The benchmark program is an
ideal test for C, and Jim Gilbreath brought out another
article in Byte, January '83, comparing C and Pascal
compilers. Some of the data following is from that article,
to which I have added my own interpretations.
Not only operation speed is tested by the Sieve program,
but the length of the object code, and compilation and
load time as well. About the only thing missing from the
test is a "bug" test! Since the Sieve quantifies the
comparison, it is an ideal medium to complete this article
on a comparison of C compilers. Because compact code is
one of the reasons that C is chosen as a language, I will list
the C compilers tested first by order of memory used in K
bytes (compiled length of a program from origin to end of
file in K bytes).

A Quantitative Approach to the
Comparison of C Compilers
This has all admittedly been pretty qualitative in its

quantitative approach.
A Comparison of C Compilers

name float sizeof static initializers casts 8 ®8 ®™*
of pkg double -defines & linker

cw/c 1.8
C/80 3.1
Q/C 3.3
BDS 3.7
C86 4.1
Telecon 5.7
Aztec 8.5
Infosoft 8.6
Lattice 11.1
Whitesmiths 12.0
SuperSoft 17.7

C/80 no no yes yes stat no yes yes

Infosoft no no yes yes yes yes no yes

Q/C no no no yes yes no no no

BDS fun no yes no fun yes yes yes*

SprSft no no no no

Telecon float yes yes yes yes yes yes no

Wsmth yes yes yes yes yes yes yes yes**

Aztec II yes yes yes yes yes yes yes yes

Lattice yes yes yes yes yes yes yes yes

C86 yes yes yes yes yes yes yes yes

DRI yes yes yes yes yes yes yes yes

The offsprings of Small C do pretty well in this
department, with CW/C being nothing short of
miraculous. Very notable are BDS, a very large C system,
and C86, a full set of C with the burden of having to work
in a 16 bit environment. (Sixteen bits is fast for numeric
execution, but it is not noted for its storage efficiency).
Now for speed of execution. To keep the results
consistent, the tests were conducted on a Z80 running at 4
MHz. The exception was C86 which had to be run on a
8Mhz 8086 (and Lattice on an IBM-PC 8088 at 4.7 MHz).
Time is in seconds and no attempt was made to optimize
performance.

fun - done by function not part of the std implementation
* bds compiles direct 8080

** a-natural code

name bit struct nbrof I/O manual $
of pkg field unions functs redirct length

Comments

C/80 no yes 13 yes 35 49.95 8080 cpm/hdos

Infosoft no yes 24 yes 38 59

Q/C no no** 56 yes 135 95 has source code

DBS no yes 96 + yes 181 + 150* debugger, telnet +

SprSft no yes 82 81 250 80803086,Z8000

Telecon no yes yes 30 350

Wsmith yes yes 95 140+ 600 + unix,rsx.isis,etc.

Aztec II yes 77 yes 96 195 sid support

Lattice yes yes 93 + 73 yes 163 + 63 500 + 150 8086 & 8088

C86 yes 95 yes 142 395 8086 plus 8087 spt

DRI yes yes unk yes unk

C86 7
Lattice 10 (4.7 MHz on 8088)
C/80 25
Whitesmiths 26
Aztec 33
SuperSoft 34
Telecon 38* sometimes less

** yes on ver 3
20 Lifelines/TheSoftware Magazine, May 1983

BDS C vl.43 4040* InfoSoft 28
CW/C 53 CW/C 30
QIC 49 SuperSoft 31
Infosoft 51
CW/C 53

*Newest version 1.5 ran on my wife's CCS 2210, Z80,
4MHz, at 34 seconds.

When it comes to speed of execution, the Small C
offspring didn't fair so well, with the notable exception of
C/80. Whitesmith's comes in a speedy third. If you double
C86's time, it will be about a fair comparison against the
others at 4 MHz. Even at an interpolated 14 seconds, it's
impressive.

There is a passion among C compiler writers for
optimization. Code optimization is a religion for the
creators of C packages, and versions producing tighter
code seem to be coming out monthly. BDS C, for example,
has just undergone a major rewrite going to version 1.5 for
primarily that purpose.

Besides code optimization, there is also data allocation
iptimization. On most C versions, this is available by
:ompiler switch. For most programming applications, the
urogram will be I/O bound by the slowness of the
>eripherals. In the case of programs with a great deal of
alculations, however, the I/O is critical for fast running
ode. The following is the sieve run time with optimized
lata allocation.

The last criterion is compilation and link time. When you
are into some heavy development work, continuity
recompiling after re-editing, seconds can seem like hours.
The time in the following table is in seconds.

BDS 21
C/80 37

QIC 49
Lattice 66
C86 58
CW/C 71
SuperSoft 85
Aztec 86
Infosoft 96
Telecon 201
Whitesmith's 310

BD Systems C two pass system is hard to beat for speed of
compilation. Again, C/80 is notable, particularly in the
light of its producing intermediate code that is capable of
being relocatable. Obviously, there is a close correlation
between generated code and compilation time.

Today, more than ever, C is expanding its power, in
increasingly refined implementations, and its influence,
in the number of installed C systems. It is a major
language of this decade. There are few producers of C
language packages that are not constantly making new
versions with more features, and code optimization has
practically become a "religion'. We all can look forward to
even better and more powerful C's. We, as users, are
fortunate to have such a wide variety of viable options in
choosing the packages of our choice. R

C86 7 (8 MHz)
BDSC 15
Whitesmiths 16
Aztec 21
C/80 26
QIC 26
Telecon 28

Change of Address
Please notify us immediately if you move. Use the form below. In the section marked “Old Address,” affix your Lifelines mailing label— or
write out your old address exactly as it appears on the label. This will help the Lifelines Circulation Department to expedite your request.
New Address:

NAME

COMPANY

STREET ADDRESS

ciry STATE

ZIP CODE

Old Address:

NAME

COMPANY

STREET ADDRESS

ciry — STATE

ZIP CODE

21Lifelines/The Software Magazine, Volume III, Number 12

feature The Transporter

by Van Court Hare x

The Transporter (Workman &
Associates, 112 Marion Ave.,
Pasadena CA 91106, 213-796-4401,
$69.50) is a brief collection of pro-
grams which, in conjunction with
CP/M's PIP and LOAD utilities, per-
mits transmission of any type file
from one machine to another. Only
one copy of The Transporter need be
available—at the transmitter.
The Transporter can, in fact, transport
itself—or any other program—from
sending to receiving location,
without the need for any additional
communication programs. No
special installation or ''custom patch"
is necessary.
The Transporter's procedures, how-
ever, require substantial operator
supervision. The transmission code
employed is three times slower to
transmit (and requires three times
more receiving memory) than direct
binary communication.

Heavy volume users will prefer dual
installation, hand-shaking com-
munications programs, such as
MODEM7 or Byrom Software's
BSTAM for their automatic fea-
tures—even though some local in-
stallation effort may be needed.
Handshaking is the ability of one
machine to "talk back" to another,
and so to stop transmission when
necessary, to use error checking pro-
tocols, to call for retransmission of
bad data, and so on. Fully automatic
communication and file transfer
systems require compatible com-
munications programs at both
transmitter and receiver to handle
handshaking; in addition, full
duplex, or simultaneous two-way
communication facilities, must be
used. The Transporter does not pro-
vide any form of handshaking, al-
though it does provide for error
checking after file transfer.

Some Reference Sources
The latest version of the public do-
main program MODEM7 is on
Volume 84 of the CPM User's Group

series, see Lifelines/The Software
Magazine, September, 1982, p.28.
CPMUG is at 1651 Third Ave., New
York City 10028, and current duplica-
tion cost is $15/volume. No
telephone, so write.
Byrom Software's BSTAM, and its
cousin BSTMS, are $150 list each, and
widely distributed. These products
are seldom advertised; they don't
need it, they're so good. Early
reviews appeared in Lifelines/The
Software Magazine: BSTAM in
November, 1980, p. 2; BSTMS in
September, 1980, p.6. Both programs
are mature, tested products. Even to-
day you will go far to find their equi-
valent for ease of use. Their reliability
is unquestioned.

An Opinion
The Transporter will undoubtedly be
used by many to trade themselves up
from one-ended to two-ended opera-
tion. For example, The Transporter can
send MODEM7 to a remote location
where it can be installed, then used
with its parent to obtain the advanc-
ed features just described. Needless
to say, commercial programs may be
subject to the same fate— in violation
of their license agreements. Inciden-
tally, the name Transporter is from
Star Trek: "Beam me up, Scotty."

The Transporter in Action
The Transporter distribution disk
comes with 2K of original code by
Anton Pietsch (SEND-HEX.COM)
and nine public domain programs:
CRCK.COM (from CPMUG Volume
84) to do cyclic redundancy checks
on the files sent and received;
NULLKILL.COM to eliminate un-
wanted nulls from text files; and
several .DOC files. Jerry Prounelle,
BYTE's monthly columnist, wrote
the documentation, which includes
a general discusion of file communi-
cation using PIP, plus specific in-
structions for use of SEND-HEX.

SEND-HEX, the essential program
on the Transporter distribution disk,

is placed on the sending machine
(TX hereafter), which must be able to
transmit through the port assigned
to CP/M's PUN: logical device. The
receiving machine (RX, hereafter)
picks up the message on the port
assigned to CP/M's RDR: logical
device.
For practical purposes, and ease of
hookup, these communications
ports will usually be serial, RS-232
types; the characteristics of both
communication ports— baud rate,
number of data and stop bits, parity if
any— must match exactly. If it is not
the default condition of your present
CP/M installation, CP/M's STAT com-
mand can assign your TX serial port
to PUN: and your RX serial port to
RDR: . The console device must be on
a separate physical port on both the
TX and RX machines, because the TX
console controls transmission and
the RX console controls reception.
The required setup is aptly described
in the SEND-HEX documentation.

A Seven-Step Blastoff
Now the fun begins! Oil up your
swivel chair—you now need to
operate both TX and RX at once. Or, if
you are using a phone-modem hook-
up to a remote location (more dif-
ficult) you need a sturdy helper at the
other end and some form of voice
communication. You may have to fid-
dle a bit to adjust the TX operation to
RX's capabilities. Here is how it goes:

1. The sender at TX types SEND-
HEX[d]Filename nn (where nn is an
optional number in the range 1-15
which controls the length of data
blocks transmitted), then

<RETURN>. For example,

A>SEND-HEX B:Myfile.COM 10
<RETURN>

RX has no way to tell TX to pause
when the RX memory fills up and
disk storage is initiated. Consequent-
ly, long files must be sent in several
segments to avoid loss of data.
Segmentation of the TX file is the

Lifelines/TheSoftware Magazine, May 1983

purpose of the SEND-HEX "nn"
parameter. The size of RX's working
memory determines the value of
"nn" to use.
Omission of "nn" places no limit on
the maximum length block for
transmission. (TX files of 10-15K can
usually be received completely
without segmentation if RX is a 64K
machine.) Larger files will require (a
one time) experimental adjustment
of "nn" (try, say 15, then 14, then 13,
and so on) until you find the largest
segment size which RX can accept in
one shot. More on this momentarily.
Whatever value of "nn" has been
chosen, SEND-HEX will say "Cur-
rent Segment Number = 01 / Press
RETURN when receiving computer
is ready.'

2. At RX type PIP [d:]
Filel.HEX = RDR:, then
<RETURN>. This preparation for
file reception may be done at any
time before the next step.

3. Finally, at TX type a
<RETURN>. Transmission starts.
SEND-HEX converts the original file
at TX into standard Intel Hex format
records and transmits them to RX,
where PIP receives them (The user
need know nothing about Intel Hex
files, except that they are about three
times larger than the original.
However, it is the intermediate Intel
HEX code which ties the two CP/M
machines together.)

4. Three conditions can now occur
atRX:

(a) If the RX working memory is
adequately spacious to hold the en-
tire TX Intel Hex segment transmit-
ted, the complete segment passes
from TX to the RX working memory
with no interruption or chopoff.
Upon reaching the end-of-file mark,
PIP stores the received segment as a
complete file. If TX reports "END OF
FILE," you are done sending, and go
to Step 5, below.

(b) If TX reports another seg-
ment is still available to send, you
must set up PIP at RX again with
another name; for example,
PIP[d:]File2.HEX = RDR:, and the
operator at TX then strikes
<RETURN>. You can continue in
this way, segment-by segment until
the entire file is complete and "END
OF FILE" appears at TX. Now go to
STEP 5.

(c) If the selected TX segment

size was too large, the RX memory
will be exceeded before end-of-file,
transmitted data will be lost, and the
received segment will be erroneous.
If you are sitting in front of both RX
and TX, you will pick up this error
condition immediately; the RX disk
will start up before the TX console
reports END OF FILE or next seg-
ment number. If the operator does
not catch a memory overrun, the
LOAD operation at Step 5 or a
final CRC check will. If you do get
lost data, go back to Step 1, make
"nn" smaller, and try again. (Be sure
to remember the largest value of "nn"
you were able successfully to use for
RX; it is the value to use thereafter for
the same RX machine.)

5. When TX finally reports END
OF FILE, you will have one or more
file segments with suffix .HEX at RX.
The objective is to end up with only
one .HEX file; consequently, if you
have more than one segment, use
PIP to put the segments together in
correct sequence; for example:

PIP File.HEX = Filel.HEX,File2.HEX,
File3.HEX,....

6. To get the RX file back to its original
form, type "LOAD File" (no quotes)
on the RX machine following CP/M
rules. (LOAD assumes a .HEX exten-
sion, so don't type it. The name
typed for File is the final name you
want to use.) CP/M's LOAD com-
mand converts an Intel Hex file for-
mat into a .COM file and simultane-
ously checks the .HEX file format for
accuracy. (You can Type a .HEX file
and look at it if you like; you will see
the format includes fixed line lengths
and structure.) An invalid Intel Hex
record is an error. Thus, the LOAD
operation can have two outcomes:

(a) Successful LOAD—You will get
a get a CP/M prompt, and you are
done. If the TX file was originally a
.COM file, the received file name is
also correctly formed. If the TX file
was not a .COM file, use CP/M's REN
command to rename it with the ap-
propriate original extension.

(b) Unsuccessful LOAD—There
was a problem with the received file
format (invalid Intel Hex record or
file format).

In the latter event, the transmitted
segments were probably too large, so
try again from Step 1. If a correctly
sized segment process results in a
bad LOAD, you have a noisy or other-

wise faulty communication hookup,
so check and try again from Step 1.

7. As an additional check on ac-
curacy, CRCK.COM is provided for
computing a "cyclic redundancy
check" number for the original and
the received files. (You can use
SEND-HEX to transport CRCK.COM
to RX if necessary.) AT TX type CRCK
Filename and <RETURN>. You will
get a hexadecimal number on the
console. Type the same line at RX.
You will again get a hexadecimal
number. If the TX and RX values do
not agree exactly, there is some
discrepancy between the two files,
most probably due to line noise. For
.COM files, there is usually no option
but try-try-again from Step 1.

Because the process described above
must be repeated for each separate
original file transported, The
Transporter is a tedious way to
transfer entire disks, but is a satisfac-
tory method for passing across one
or two critical programs.

BSTAM
For comparison, consider Byron
Software's BSTAM (a commercial
grade, automatic CP/M to CP/M file
communicator) which requires
careful installation on both TX and
RX.

BSTAM bypasses CP/M's CBIOS and
uses machine language "drivers" for
direct communication port access.
(This avoids erratic timing and
CP/M's possible response to any
strange control characters.) The in-
stalled drivers must be appropriate to
the machine at hand. Good vendors
will either do this installation for
you, or provide a disk full of install
options at no extra charge. (For
drivers currently supplied, see notes
in Lifelines/The Software Magazine,
June, 1982, p. 82, which also apply to
BSTMS.)

Once the drivers are installed, either
TX or RX can move full disks in either
direction with CP/M-like commands
from the prompt level.

For example, after the CP/M prompt
"A>", RX types "RECEIVE B:" to set
up the desired disk for reception.
Then, TX need only type
"TRANSMIT B:**" to move the en-
tire contents of disk B on TX to an
empty disk B on RX.

Data blocks of 128 characters plus
(continued on next page) 23Lifelines/The Software Magazine, Volume III, Number 12

one line control character are
automatically transmitted, so RX
memory is no problem and manual
file segmentation is avoided. Pure
binary communication can be used
for the highest speed transfers, and
no secondary operations like LOAD
are required. For example, a .COM
file FF Hex will be transmitted as one
byte, not two ASCII F's.

Further—and nobody does more
checking than this!—each character
transmitted is checked for framing,
overrun, parity, length, and so on;
and, each block received is also
checked for lost data, exceptions,
time out, block CRC, block count,
and other error types. Erroneous
blocks are retransmitted and check-
ed 200 times (transparently) before
BSTAM gives up!

Handshaking, full duplex com-
munication, and the BSTAM pro-
gram at both ends makes this
elegance possible. The result is silky
smooth, no-nonsense file conversion
without operator labor. Guess which
program software houses and
distributors use for file conversion?

You pay your money, and take your
choice. The total cost of a BSTAM
setup is $300, but if your time is
worth anything, that's a bargain.
Clearly, you will never receive a cor-
rupted file.

BSTMS
The Byrom Software program
BSTMS, designed to communicate
with non-CP/M mainframes, is also
of interest to many. If properly used,
BSTMS can also communicate with
other CP/M machines. Like The
Transporter, BSTMS is a one-ended
package. It resides on the CP/M
machine and permits your
microcomputer to emulate a TTY ter-
minal for time-share service.

BSTMS employs the ESC key to flip
between your machine and the
mainframe (or other foreign com-
puter). Normally, with BSTMS runn-
ing, what you type goes to the main-
frame in usual terminal fashion. In
this case, you won't even know
BSTMS is there. You can get back to
your CP/M unit at any time without

loss of mainframe connection by typ-
ing the ESC key and then the C key.
That is, you can operate two
machines at once if you need to. You
can also get a complete help menu if
you type ESC H, turn your CP/M
printer on and off with ESC P, and so
on with other ESC choices. BSTMS
also lets you up-load and down-load
text files from the mainframe. ESC R
and ESC T are used for this purpose.

To receive a file, type whatever in-
structions the mainframe needs to
LIST a file, then type LIST (or the
equivalent), but do not type
<RETURN> yet. Then on your
machine Type ESCR.BSTMS will re-
quest the name you want for the
received file. You name the disk and
filename desired, [dJFilename.TXT,
and strike <RETURN>. BSTMS sets
up your disk, then sends
<RETURN> to the mainframe.
Transmission starts.

BSTMS will limit received file size to
what your working memory can hold
and chop the excess during attemp-
ted disk operations— unless you in-
stall handshaking with the main-
frame. X-ON/X-OFF protocol can be
initiated automatically from the ESC
menu, and should be used if your
mainframe can recognize it. This
protocol will permit automatic recep-
tion of long files with no operator in-
tervention. Without handshaking,
very long files must be split using a
mainframe program.

Files transmitted to the mainframe
by BSTMS are not so restricted and
may be of any length. Mainframes
usually delay the line-end
<RETURN> echo if a delay is needed
there, and BSTMS will hold up the
next transmitted line until that echo
is received. Alternatively, the X-
ON/X-OFF protocol can be used.

Text files (ASCII) can be sent and
received directly, but to handle
binary (.COM) files, BSTMS (like
SEND-HEX) requires an in-
termediate code conversion. Utility
programs named DECOMPRS and
COMPRES do this for you at your
end using normal Hex instead of In-
tel Hex format as the code. (Most
mainframes have Binary/ASCII con-
version programs available at that
end; if not, you must write one in a

mainframe language if you want to
up-load binary programs.) The
DECOMPRES.COM expansion for
binary files is exactly two (instead of
three) bytes for one—a Hex FF is sent
as two ASCII F's—so BSTMS is faster
than SEND-HEX. Clearly, however,
it is easier to have programs in
listable form when you use BSTMS
in either direction.

BSTMS error detection (like that of
BSTAM) is compulsively complete;
and, although BSTMS cannot de-
mand retransmission in the event of
erroneous data (the operator has to
try again) you won't get errors in your
stored file. We have never in three
years of use seen a false stored byte
using this product.

If two CP/M machines have BSTMS
installed, they can communicate
with each other with X-ON/X-OFF
protocol. Whole disks cannot be
transmitted automatically, but long
single files may be passed across
without user intervention.

Conclusion
Each of the three programs described
has its own virtues:

BSTAM is the best for automatic file-
to-file communication and disk
conversion tasks, particularly for
whole disks of intermixed file types.
However, BSTAM cannot be used for
terminal emulation.

BSTMS is an excellent terminal
emulator and text file communicator,
but lacks the fully automatic file
transfer features of BSTAM and also
requires intermediate steps for
handling binary files.

The Transporter cannot compete with
BSTAM or BSTMS in their own
specialities—but it can do something
neither can accomplish: directly
reproduce a program, including
itself, at a remote CP/M location
without having any special additional
programs at the destination and
without any special installation at the
transmitter.

For those reasons, we are glad we
have all three programs on hand. El

Lifelines/TheSoftware Magazine, May 198324

How About Some POWERFeature

by Bob Kowitt
Power is a program that will do a
great deal toward eliminating the
errors and confusion arising when a
novice uses CP/M. Actually, there is
very little in POWER that has not
been available to members of
CPMUG, the CP/M User's Group.
However, one would have to dig for
it. Then, after finding it, the program
to perform the function would have
to be loaded and run.

POWER combines many of the in-
trinsic functions within CP/M, the
most useful of the functions within
the transient programs provided
with CP/M and several enhance-
ments that I have been looking for,
some of which I found and others I
didn't.

Pavel Breder, the author of POWER,
has combined these functions into
one program that calls sub-routines
of a menu-driven package that, in my
opinion, is well worth the $150 being
charged by COMPUTING, the San
Francisco distributor.

The general format of POWER per-
mits menu-driven operations for
most CP/M operations including
copying, typing, renaming, erasing,
and reclaiming erased files which
helps to eliminate typing errors dur-
ing these procedures and source/
destination errors that have caused
so many miscopied files when using
PIP. In addition, there are enhanced
direct disc accessing routines and
enhancements to memory modifica-
tion abilities that have been possible
with DDT or SID.

I would like to go down the list of
some of the commands to demon-
trate the added strength POWER
gives the user of CP/M.

Most of the operations are driven by
a screen directory. The command
may be used with the CP/M asterisk
format with one additional feature:
the period may be left out. Therefore
you can type ERA ** and all files will
be handled.

COPY This command by itself
yields a directory of the
disc with a unique num-
ber for each entry. To
copy to another disc, you
have the option of enter-
ing the file's temporary
number, several num-
bers or an including form
such as 5-12, meaning all
files numbered 5 thru 12.

ERA Erases files in the same
manner as COPY copies
but lets you know as each
is being erased. This per-
mits unerasing at once
should you have made an
error. The program can
be modified (again,
menu driven) to ask
before each erasure, if
you want to erase the
particular file listed, just
in case you had meant to
type DIR or something
else and type ERA by
mistake.

REN Renames files, again
with the directory for-
mat. After selecting your
numbers, it will step
through your list, one by
one, allowing you to
rename your selected
files. The operation is
made easier by allowing
you to enter an asterisk to
retain either the existing
program name or type.

RUN Enter the file's temporary
menu number and the
appropriate .COM will
be run. At present, this
takes you out of POWER,
but Clyde Steiner of
Computing told me that
they are working on a
new version which will
set up a submit file per-
mitting POWER to reload
upon completion of the
COM file operation.

TYPE This runs just like CP/M's
type function with the

exception that a queue
can be established in the
preceding manner to dis-
play a series of files. At
any time during the dis-
play, the space bar will
halt the display and
single step by line until
any other key is used.
Paging can be disabled or
enabled using the LOG
function.

DUMP Comes in four flavors:
ASCII, formatted ASCII,
hex and combined hex/
ASCII.

So far, minor stuff!! However, let's get
away from the CP/M standard opera-
tions now.

CHECK Read a disc file and do a
CHECKsum on it. Yes,
CPMUG does have
CRCK to do the job but it
must be on the disc, load-
ed and run.

STAT This does only one func-
tion of the STAT we all
know and love. It lists the
free and used space on
the drives. However, we
have other functions
within POWER to do
most of the others.

SETDIR, SETSYS, SETRO and
SETWR will set the at-
tributes in the file called
for to the directory,
system, read only and
read/write status as
desired.

SPEED Ever want to slow up the
display on your terminal
to reading speed? SPEED
allows you to set the
display rate from a level
of 0 to 9. At level 9, you
can go out for lunch
while your screen dis-
plays.

SEARCH is a goodie I have been
trying to find for several
years. It permits search-

(continued on next page) 25Lifelines/The Software Magazine, Volume III, Number 12

ing thru memory for a
group of bytes. Not only
that, but you can use a
wild card, '?', to find a
group and display the
space to either side. Sup-
pose you want all loca-
tions within POWER it-
self that have the
characters "SET". Type:

SEARCH 100 3200 "???SET???".
This will yield the loca-
tions in the POWER com-
mand table for SETDIR,
SETSYS, SETRO and
SETWR, and display
them with the three bytes
before and the three
bytes after, should you
want to modify the com-
mands themselves.

DS This is a modification of
the DDT command 'S'
used to substitute mem-
ory bytes. DS, however,
not only displays the hex
values at the memory
address, but also the
value in ASCII and
binary. To alter the value,
you don't need to know
the hex for the ASCII
characters to modify
memory in the former
example. Just type '.A
and you can enter your
changes in ASCII being
certain to allow a space
between each entry.

GO (address) will load a file
to the address and run it
at that address.

LOAD (file) (address) will load
the file but not run it.

SAVE (file) (address) (sectors)
will save a file at any
memory address. First
run SIZE (filename) to
get the size in sectors. If
the file is already on the
disc and the size has not
been altered, the sector
size need not be entered.
POWER will read the size
from the existing file.
Note that the file can be
saved to disc from any
memory location, not
just 100H as with the
CP/M intrinsic SAVE
command.

Back in my days, BC, that is, before
CP/M, I had a North Star system with
the North Star DOS. I valued the
ability to go to any physical sector of
the disc and read or write directly to
the disc. Admittedly, it is a
dangerous procedure for the novice
but, in the hands of a knowing tech-
nician, it is a valuable and powerful
tool. Now, thanks to POWER, I can
do this again and even better in
CP/M.

I can now:

READ
WRITE to and from any track and

sector into memory loca-
tion, the number of
sectors I want to manipu-
late.

READGR
WRITEGR any CP/M group to and

from any memory loca-
tion.

Ever want to transfer a group of files
from one user area to another? First
you must use DDT to move PIP to the
new user area. Then invoke the user
area and pip from the former area
using the [Gn] parameter. POWER
has the command:

XUSER Now when you COPY,
you will copy directly
into the new area.

LOG Would you like to set
POWER to display your
directory in two, three,
four or whatever col-
umns? Set it to ask you
for verification before
every move, verify all
transfers, create a backup
file if a file exists during a
copy procedure. Sup-
pose you are copying a
long list of files and
during transfer of a long
file, you run out of disc
space. POWER can can-
cel that transfer and try to
transfer the next smaller
file. All of these can be
done from a menu by
invoking this command.

TEST does an extensive test of
the disc read and write,
saving any bad sectors
found in a reserved SYS-
TEM file. After this is
done, CP/M will not

attempt to write to these
sectors. The disc has
effectively been re-
claimed for further use.

This article does not attempt to cover
all the facilities of POWER but
enough to show that it is a powerful
tool. Should you want to provide
POWER to a client and modify it so
he cannot do irretrievable damage
(with READGR, for example), using
the DS command to change the first
character of any command in the
table to will prevent the use of the
command and also its display by the
'?' which lists all available com-
mands.

During any procedure, hitting the
ESCAPE key or Control-C will stop
the procedure while a Control-K
goes to the next operation in the pro-
cedure. In addition, there are four
user definable functions available
and jumps available to your own
routines. There are three pages of
customization notes and a READ.ME
file on disc.

So much for the good news. Now the
bad news. . .1 found none; only one
bug but several things I would like to
have modified. First the bug: in the
SEARCH mode, all locations are
displayed plus two, 3115H and
3128H, which had no connection
with what I was seeking. This came
up on all searches so I learned to
ignore it. Not a disabling bug.
Changes:

1. Re: RUN — This one is already
in study. Come back to POWER after
running another COM file.

2. Re: RECLAIM — I have been
running FINDBAD from CPMUG. I
modified it to display a mark at each
group read. When using the TEST
command, POWER looks at every
sector within the group and conse-
quently takes much longer than
necessary to test the disc since it will
continue to examine all 16 sectors in
the group even if the first one is
found to be unusable. These bad
sectors are stored as a file on the disc
named, " = = = = = = ==. = = = " and
therefore removed from access by
CP/M on future writes. There are 243
groups on my disc. Since CP/M files
everything in groups, finding a bad
sector within a group should
disallow the entire group. After the
test, you are asked whether you want

Lifelines/TheSoftware Magazine, May 198326

to repair the disc. Inasmuch as I did
not know how or what, I did not do
so. . . nothing in the manual about it.

3. Re: READxx — When I use
Ward Christensen's DU to look at a
disc, it will stall when finding some
bad sectors but after 10 reads, will let
me know and display the sector for
possible repair. I was unable to do
this using POWER'S READGR or
READ function. Many of the prob-
lems from a BDOS error can be
repaired but not within POWER.
This ability is necessary for more
advanced use of the CP/M system.

4. Re: RECLAIM — Unerasing
previously erased file can present a
problem if you are not aware of the
operation of CP/M. When the
RECLAIM procedure is called, ALL
previously ERAsed files on the disc
are displayed. By this time, some of
the groups previously allocated to
these old files could and probably
have been assigned unless there
were no disc writes since they were
ERAsed. RECLAIM lists them one at
a time and asks whether you want to

organization for reference 7
readability 7
includes all needed

information 5
Ease of Use

initial start-up 7
running other COM files 6
on board help 3

Error recovery
ordinary mis-typed

commands 7
catastrophic mis-typed

commands 7

UNERASE them. BE CAREFUL!!
Only files erased since the last disc
write may be UNERAsed safely.

5. Re: ALL FUNCTIONS - I
would like the screen directory to
print in alphabetic order. Finding the
various files to operate on would be
much easier. This one lack, while not
serious enough to preclude buying
POWER, has forced my use of PIP
after running my SD (sorted direc-
tory program). I realize that there
could be some additional complica-
tions in the coding since the numbers
next to each entry probably refer to
the files' location on the CP/M direc-
tory track. An index must be set up in
memory to call for the program to be
acted upon. Nevertheless, it is a
necessary enhancement that should
be provided at the earliest oppor-
tunity.

Qualitative Factors
RATING

Documentation
organization for learning 7

Ratings in this table are 1-7:
1 = clearly unacceptable for normal use
4 = good enough for most purposes
7 = excellent, powerful, or very easy

depending upon the category.

POWER is available for $150 from:
COMPUTING

2519 Greenwich St.
San Francisco, CA 94123

and they offer a money-back
guarantee. If you don't like it, return
it. While I have seen this offer
associated with a combined working
and demo disc, this is something
unheard of with working programs
alone, f l

Version 2 For Z-80, CP/M (1.4 & 2.x),
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

OURS OTHERSFEATURES
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-definable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I l/l l+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics
Tutorial reference manual
50 functions (AM951 1 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only)

YES

YES© 28
FORTH-79 V.2 $99.95
ENHANCEMENT PACKAGE FOR V.2:

Floating point $ 49.95
COMBINATION PACKAGE (Base & Floating point) $139.95

(advantage users add $49.95 for Hi-Res)
(CA. res. add 6% tax; COD & dealer inquiries welcome)

MicroMotion
12077 Wilshire Blvd. # 506
L.A..CA 90025 (213)821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

Lifelines/The Software Magazine, Volume III, Number 12

Users Group Corner
We are starting a new columns on User Groups. If you
belong to a Users Group or Computer Club, please send
us information on your club and we will publish it in our
Users Group column. Please include your groups ad-
dress, dues, and what your club is interested in.
Pascal/MT + Users Group ____________
The Pascal/MT 4- family of compilers has been adapted for
use on different operating systems, such as CP/M, MP/M,
CDOS, MDOS, M/OS or RMX-86, as well as a large
number of different computers. AT present, the
processors i8080/i8085, Z80 and i8086/i8088 are
supported. The compiler for MC-68000 based systems
(16-bit) will become available during 1983. Current
indications are that Pascal/MT + and the associated
programming package, SPP (Speed Programming
Package) will soon become the system of choice for
business, technical and scientific applications, especially
since REALS can be represented in both floating point
and BCD numbers.

The Pascal/MT + Users Group, MTPUG, was formed for
the purpose of encouraging the use of Pascal and in
providing the users of this rather special program product
with the opportunity to communicate woth others who
speak their language. All communications will be
published in a Newsletter which will include reviews and
articles on software packages, data base languages,
programs submitted by the members, and graphics
software. Attention will be directed to programs and
products in which Pascal/MT + is the "host" language.

floppies in a variety of formats. The material on a single 8 "
diskette may be contained on 1, 2 or 3- 5.25 " diskettes. The
cost for the standard 8 " program disk is $10 for orders from
the US, Canada and Mexico and $13 (air mail) elsewhere.
Members who submit Pacal programs or articles for the
Newsletter on diskette will have their disk returned with
either a copy of the most recent program disk or the one of
their choice. Since postage is a major factor in our budget,
it is essential that all persons who send disks include
return postage.

All applications for membership must include your name
and full address (including postal code) in exactly the
same way you wish it to appear on your MTPUG
Newsletter, if at all possible, limit the number of lines in

to Guenter Musstopf at the address below. Otherwise
contact henry Lucas.

MTPUG
Pascal/MT Users Group
Henry Lucas
P.O. Bos 192
Westmont, IL 60559
(312) 986-1550
After 7PM and NOT
(Tues, or Thurs.)

MTPUG Europe
Pascal/MT Users Group
Guenter Musstopf
Schimmelmannstr, 37a
D-2070 Ahrensburg
West Germany
Phone 04102/56629

Please indicate if NEW or RENEWAL subscription (Circle
one).
Dues: 1-year 2-year 3-year
United States $ 7.00 $13.00 $20.00
Canada and Mexico $ 8.00 $15.50 $23.00
Europe, No. Africa, Central Asia 30 DM 59 DM 88 DM
All other, Air mail $14.00 $27.50 $41.00

MTPUG is a non-profit organization and is not associated
with Digital Research, Inc. Nevertheless, Digital Research
provides the editor with information on bugs and
forthcoming events for inclusion in the Newsletter. Since
its beginning, they have supported and encouraged the
Editor of MTPUG in many ways.
The MTPUG Newsletter is published four times a year.
Each issue consists of about 20 pages. It contains
experiences reported by the members, tutorials, reviews
of new products or articles and books, small Pascal
routines (procedures, functions and programs), letters
from manufacturers and members, bug reports, fixes and
news about persons and products. The MTPUG
Newsletter is composed of material submitted by the
members and by the News Editors. The cost of the
Newsletter is included in the annual Membership fee
which is presented below.

The MTPUG Newsletter only publishes Pascal programs
if they are short, since we have never found anyone who
was willing to type long ones from printed material.
Therefore, the exchange of programs between members of
MTPUG will be on "MTPUG Program Disks." The index
of each new disk will be published in the Newsletter. The
index of all available MTPUG program disks (7 disks at
present) can be requested from your Editor. A $1 donation
and self-addressed stamped envelope is appreciated. The
program disks are availabe on standard 8" (soft-sectored
SS/SD IBM 3740 format) from your Editors. Consult the
most recent Newsletter for the availability of 5.25"

Eurocheck, or US Funds on a US bank only.
Forth Interest Group _______________
The FORTH Interest Group is a worldwide organization
of over 3,500 members devoted to the dissemination of in-
formation about the FORTH computer language. FORTH
is an extensible, powerful, interactive, transportable and
compact computer language. It can include an interpreter,
compiler, assembler, operating system and editor. Im-
plementations are available for micro, mini, amd main-
frame computers.

For further information call the FIG HOT LINE (415)
962-8653.

CBasic Users Group
PO Box 2365
Sherman, TX 75090

The philosophy of CBASIC ASSOCIATES is to offer any
economically feasible services of interest to its members.
The services available and the resources allocated to
provide them will be given the following priorities:

1) Business Applications. (Including personal finance)
2) Business Education. (continued on page 36)

Lifelines/TheSoftware Magazine, May 198328

-etter _______
To The Editor

String x2$, Lowcase$, Scratch$, Segments
Interger Last.character%, Character%,

Pointer%, Flag%

Scratch$=Left$(x2$, Pointer%, 1)
Last.character% = Len(x2$)
Flag%=0

For Pointer% = 2 to Last.character%

Segments =Mid$(x2$, Pointer%, 1)
Character%=Asc (Segments)
If Character% <65 then \

If Character% = 32 then \
Flag% = l \

Else\
Flag%=0\

Else\
If Flag% = 1 then \

Flag%=0\
Else\

If Character% < = 90 then \
Segments = Chr$(Character% + 32)

ScratchS = ScratchS + Segments

Next Pointer%

LowcaseS = ScratchS

Fend

Rem -- Modification Number 1

Rem — Removed variable 'SEGMENTS'

Def LowcaseS (x2$)
String x2$, LowcaseS, ScratchS
Integer Last.character%, Character*#),

Pointer*#), Flag%

ScratchS =Left$(x2$, 1)
Last.character*#) = Len(x2$)
Flag%=0

For Pointer*#) = 2 to Last.character*#)

Character*#) =Asc(Mid$(x2$, Pointer*#.,1))

If Character*#) <65 then \
If Character*#) = 32 then \

Flag%=l\
Else\

Flag%=0\
Else\

If Flag*#. = 1 then \
Flag*#>=0\

Else\
If Character*#. < = 90 then \

(continued on next page) 29

Dear Editor:

Regarding Robert P. VanNatta's article of the March 1983
issue of Lifelines entitled, "Get a Better Performance Out of
CB-80," I found a bug in his sample program as well as
some rather elementary mistakes.

The bug appears when he translated his old CBasic pro-
gram statement (Figure 3A, page 36) which checked to see
if the variable "CH ARACTER%"was "less than or equal to
65." This caused trouble with the capitalization of the let-
ter "A" in names. This fix, as shown in page 1 of the enclos-
ed listings, is to change the statement to check to see if the
variable "CHARACTER%" is simply "less than 65."

Since the article was about better performance, and hence
to some degree about optimization of both CB80 code and
of the resulting 8080 code, the following three modifica-
tions can make quite a difference in a completed program.
The first sample shows how easy it was to remove a
variable which was not needed. This resulted in a 9.7%
reduction in code size and in a whopping 30.0% reduction
in the data area size. This is what his article was talking
about on page 5 under the subheading "Use Complex
Statements."

The next example, found in the enclosed listings, shows
no large savings in either the code or data area but is a
practice that even beginning programmers should follow.
That is the use of CB80's built in handling of true and false
instead of using 1 and 0 to do the same thing.
If we go to the last listing you can see what the use of
CB80's true and false can really do. Instead of having a
complex "IF" statement, we can reduce it to just one sim-
ple statement. It will assign CB80 true (-1) if it is equal
and CB80 false (0) if it isn't equal. The result of this change
is a 3.8% drop in the code size.

If we put all of these changes together we have not only
eliminated needless lines of code, but have reduced the
code size by 13.6% and the data area size 30.0%! That is
quite a savings for only 23 lines of original CB80 code!
Your magazine is very informative and enjoyable. I look
forward to reading it every month.

Randy Kimbro
Software Development
Star Software

Rem -- Changed:
Rem Character% < = 65
Rem
Rem -- To:
Rem Character% <65

Def Lowcase$ (x2$)
Lifelines/The Software Magazine, Volume III, Number 12

Character% = Character% + 32
Scratch$ = Scratch$ + Chr$(Character%)

Next Pointer%
Lowcase$ = Scratch$

Def Lowcase$ (x2$)
String x2$, Lowcase$, Scratch$
Integer Last.character%, Character*#), Pointer*#),

Flag*#>

Scratch$=Left$(x2$, 1)
Last.character*#> = Len(x2$)
Flag*#) = 0
For Pointer*#) = 2 to Last.character*#)

Character*#) = Asc(Mid$(x2$, Pointer*#), 1))
If Character*#) <65 then \

#) = (Character#) =32) \
Else\

If Flag*#) then \
Flag%=0\

Else\
If Character*#) < = 90 then \
Character*#) = Character*#) = + 32

Scratch$ = Scratch$ + Chr$(Character%)
Next Pointer*#)

Lowcase$ = Scratch$

Fend

Fend

Rem Modification Number 2

Rem -- Change FLAG% to use CB80 false (0) and
true (-) instead of 0 and 1

Rem -- Changed:
Rem
Rem

Flag% = l

Rem -To:
Rem
Rem

Flag%=-1

Rem - And changed:
Rem
Rem

If Flag% = 1 then \

Rem -To:
Rem Fi Flag% then \

Def Lowcase$ (x2$)
String x2$, Lowcase$, Scratch$
Integer Last.character%, Character%,

Pointer%, Flag%
Scratch$ = Left$(x2$, 1)
Last.character% = Len(x2$)
Flag%=0
For Pointer% = 2 to Last.character%

Character% = Asc(Mid$(x2$, Pointer%, 1))
If Character% <65 then \

If Character*#) = 32 then \
F lag%=-1\

Else\
Flag%=0\

Else\
If Flag*#> then \

Flag%=0\
Else\

If Character*#) < =90 then \
Character*#) = Character*#) + 32

Scratch$ = Scratch$ = + Chr$(Character%)
Next Pointer*#)

Lowcase$ = Scratch$

Fend

AUTHOR S RESPONSE
This response confirms the main point of my article which
was intended to suggest that careful optimization of any
given code segment can usually result and attend a 30%
reduction in the amount of code.
The suggestions of Mr. Kimbro are ones which for the
most part I made in the article and failed to follow through
in the example, although, modification #3 is a wrinkle
which I had never thought of.

Robert P. VanNatta

SubscribersAttention

To Lifelines Magazine, its staff, and all its subscribers:
It has come to my attention that issues of Lifelines
Magazine have been mailed out improperly. This resulted
in a total misunderstanding on our part. In no way should
Lifelines Magazine be held accountable for this; we accept
complete responsibility. You have my personal guarantee
this matter will be watched very closely to insure it will not
happen again.

I would like to thank Lifelines Magazine for being so un-
derstanding in this matter. Thank you.

Al Basile
President

Complete Direct Mail Service

Rem -- Modification Number 3

Rem — Changed:
Rem If Character*#) = 32 then \
Rem Flag*#> = 1 \
Rem Else \
Rem Flag%=0
Rem
Rem -To:
Rem Flag% = (Character*#) =32)

30 Lifelines/TheSoftware Magazine, May 1983

New ProductsNew Versions

MicroSpell for IBM-PC
Lifeboat Associates
1651 Third Ave.
New York, NY 10028

Version—Interim before 5V

This version includes the following: A reverse video patch
has been incorporated into the context printing routing.
(Thanks go to Clyde Washbum of Earth Terminals for this
patch.) A warning is now issued whenever the correction
or replacement of a word results in its size changing. This
is an indication that a soft hyphen might have to be replac-
ed, or the text reformatted. A bug in V4.5 which prevented
the auto-replace feature for the "R" and ZC" commands
from working has been fixed. The disk I/O routines have
been rewritten. This greatly speeds up the dictionary
loading process.

INFORMA X
Abacus Data Inc.
1920 San Marco Blvd.
Jacksonville, FL 32207

This information management system features many new
features including: cross-file data sharing, multiple file
reporting, multiple screens per record, far broader ap-
plication capabilities, increased speed and security and
greater data file capacity. INFORMA can now run on any
8- or 16-bit systems with Z-80, 8085, 8086 and 8088 proc-
essors, operating CP/M-80 or CP/M-86.

FOOT tCONTROL_________________________________
Digital Servo Sytems
PO Box 1248
San Luis Obispo, CA 93406

This conversion for use with word processing programs
kit gives the operator an additonal control key that is
located on the floor and operated by foot. Generating a
control character is a simple matter of pressing the foot
switch and then typing the desired character key. FOOT
CONTROL provides improved editing speed, greater
editing accuracy, and highly reduced operator stress and
strain. It also can be used as a duplicate ESCape key for
software requiring large amounts of ESC sequences.

Price: $39.50

FilePlan
Chang Labs
5300 Stevens Creek Blvd. Suite 200
San Jose, CA 95129

This electronic filing system has been designed for ease of
data entry by the end-user. The exclusive worksheet for-
mat allows multiple records to be viewed simultaneously
and existing records to provide examples for data entry.
Also, FilePlan has special help commands, an on-screen
menu, data validity (attribute verification) and user
prompts. Records can contain between 128 and 2048
characters with up to 32 variable-length fields with up to
99 characters each. Binary-Tree indexing keeps records in
the proper sequence, automatically updating the se-
quence as records are added, deleted or modified.
Requirements: CP/M system 8- or 16-bit versions, mini-
mum of 64K, and two drives with at least 150K storage per
disk.

Price: $295

BIBLIOGRAPHY
Software Digital Marketing
2670 Cherry Lane
Walnut Creek, CA 94596

This program compares citations in a manuscript with the
entries in a card catalog and constructs a bibliography of
all entries cited. Entries are added to the catalog using a
text-editor. Each catalog entry has a key name (for exam-
ple, author and year of publication), followed by biblio
graphic information such as the author's name, the title,

(continued on next page) 31

OTHER NEW VERSIONS _______________
Lattice C (CP/M-86) 1.03/1.21
C-Food Smorgasbord 1.2
ASCOM-802.24
PRO-MAN 5.02
WordStar & Mail Merge (CP/M-86) 2.24
dBASE-II/86 & PC-3.0
BDS C 1.50a
The CP/M Workshop 1.02
UNICALC/PC—3.0
MULTIPLAN-1.05
TIM-1113.22 (CP/M-80)
QUICKCODE(IBMPC)
BSTAM-86 VICTOR (CP/M-86, MS-DOS) 4.6
PAS-3 Medical-1.72

Lifelines/The Software Magazine, Volume III, Number 12

journal, publisher and annotations. The entries may be of
any length and format. BIBLIOGRAPHY can also copy
entries from the catalog to footnotes in the manuscript, or
replace citations in the manuscript with numbers corres-
ponding to the order in which the works appear in the
bibliography. It also constructs a bibliography of all works
cited—alphabetized or numbered, with annotations in-
cluded or excluded.
Requirements: CP/M-80 or CP/M86 or IBM-PC DOS, most
wordprocessors (WordStar, Spellbinder, PeachText and
SuperWriter.

Price: $125

8086 FORTRAN Compiler _________
SuperSoft
PO Box 1628
Champaign, IL 61820
This FORTRAN compiler is full ANSI 66 standard with ex-
tensions. Hardware floating point support for the 8087 co-
processor is available as an option, as is a RATFOR
preprocessor. It is also available for Z80 based microcom-
puters running the CP/M-80 operating system.

Requirements: CP/M-86 or MSDOS or IBM PC DOS.
Price: N/A

TOTAL MATERIALS_________________________________
TCS Software Inc.
3209 Fondren Rd.
Houston, TX 77063

This materials/parts explosion and tracking package for
OEM assemblers and manufacturers works together with
an enhanced version of TCS TOTAL INVENTORY to pro-
vide a complete inventory system with the flexibility of a
built-in data base manager. It produces a Bill of Materials
for every product, prints production scheduling, mate
rials planning, and production cost analysis reports, and
lists reference numbers for engineering drawings and
parts lists numbers.
Requirements: CP/M-80 2.2, 48K TPA, 100K of Disk
Storage.

Price: N/A

RXWRITER ______________________
Hall Design
250 Maple St.
Wilmette, IL 60091
This prescription writing program for physicians permits
preparing prescriptions six at a time using a physician's in-
dividual list of drugs. Prescriptions are printed in
duplicate, one for the patient another for the clinical
record. A disk file is created which contains the name,
date, diagnosis, and prescription abbreviations. This can
be searched to find, for example, all the patients who were
given a specific drug. Included in the system are utilities
for adding, deleting, or modifying drugs in the drug file
and a help routine which looks up the information in the
physician's list of drugs.

Requirements: CP/M-80, 48K
Available for: 8" SD, Apple II, Kaypro, Xerox 800, H-89-
Z89, Osborne

Price: $50.00

Bugs-
RUN/Z CP/M 8080/Z80 version only
Rev. -1.02 //'X/
System/Z Inc. /X/'/
PO Box 11 / X X X
Richton Park, IL 60471
Two minor bugs are present in RUN/Z. They are: 1. minor
inaccuracies in trig, log, and exponentiation. 2. slow ex-
ecution of certain exponentiation functions.
They may be easily corrected with the PATCH utility pro-
gram provided on your master disk.
Please follow this procedure precisely:
1. As PATCH is a compiled BASIC/Z program, execute it
by typing the command: RUN/Z PATCH
2. Respond with A through P to indicate the name of the
drive on which the program to be "patched" resides.
3. PATCH will display a line number, enclosed in angle

brackets (e.g. <001>). Enter the appropriate four
numbers, each followed by pressing <RETURN>, as
detailed below:

<001> 154002034017
<002> 154 002 035 088
<003> 154 002 093 067

4. Finally, press just <RETURN>. PATCH will allow for
correction of any entry errors prior to the final write to
your disk.

Lifelines/TheSoftware Magazine, May 1983

TRANSFORM _______________________ _______________
MasterComputing Inc.
PO Box 17442
Greenville, SC 29606

This structured program translator allows you to write
your programs in a structured Microsoft BASIC, then
automatically translates those programs into "real"
MBASIC code. You can even emulate PROCEDURE calls
with an incredibly flexible INCLUDE facility. You can
create generic subroutines that can be merged into your
program during translation. Variable names are changed
automatically. You can write structured programs without
line numbers, with labels, and INCLUDE your library
programs.
Requirements: CP/M-80

Price: $29.95

DPATCH
Systems Plus Inc.
1120 San Antonio Rd.
Palo Alto, CA 94303

This utility recovers data from damaged hard or floppy
disk and flags I/O errors without destroying user data.
DPATCH also recovers files accidentally erased, displays
(and alters) any sector on a disk, and can provide a printed
log of each session. Designed with the business computer
user in mind, DPATCH operates in full screen mode.
Requirements: CP/M or MP/M
Price: $195.00

Software Notes
Macro of the Month

Todd Katz

One of the nicest things about PMATE macros is that it is
usually easier to customize an already existing PMATE
macro or even improve one, than it is to write one from
scratch.
Thus the first macro this month is an enhancement of a
SEARCH macro developed by Mike Olfe to allow a search-
and-replace routine which gives you the option of imple-
menting the change or not. With PMATE's standard
Cntnx command you are presented with an accomplished
fact.
This macro has now been "enhanced" to give a little more
screen friendliness by clearing out four or five lines at the
top of the screen while the string to be changed and the
string to change to are displayed. The routine should also
give inspiration if you are interested in building menus
that are longer than the 80 columns on the command line.
The STRING macro, also listed, must be stored in
PMATE's permanent macro area in order for SEARCH to
work.
The second macro, TYPEWRIT.MAC enhances one of
Mike Aaronson's sample macros in the current PMATE
manual. As the name implies, TYPEWRIT.MAC turns
your computer into an overly-expensive typewriter. The
enhancement portion of the macro permits you to edit the
line you are typing as long as you have not hit a return,
and you can also use the DEL key to back-up and erase
through the line before the RETURN sends the entire line
to the printer. This feature duplicates the "magic line" fea-
ture available on $1,700 Xerox electronic typewriters,
among others.
HIGHBIT.MAC will display any special graphics or other
characters at your terminal and the decimal number of the
character. Although the current version of PMATE will not
allow you to save these high bit characters per se, they can
be utilized with the insert command ni. I've found these
characters useful in CP/M-80 for building more attractive
displays, menus, prompts and flags for my text editing
macros.
On the development front, the boys at Phoenix Software
are engaged in a massive revision of PMATE. Most of the
efforts are being directed at the 16-bit version but a trickle
down effect for the 8-bit world can be expected. In addi-
tion to the revision, PMATE seems to be having children.
One version, not yet available, is reportedly VERY
friendly, with menus no less. Another is nothing less than
a full blown typesetting machine. No release date for
either product has been announced.
It would not do not to take note of the departure of Mike
Olfe from this column. Mike has moved down to the
Washington, D.C. area to help the world's first electric
company master the art of microcomputers. Mike will be
missed but he has promised to offer us sage advice and
barbed criticism and — hopefully — a macro now and
then.

Lifelines/The Software Magazine, Volume III, Number 12

;search macro
4[i
$] ; insert 4 blank lines
-21 ; move back two lines
t ; tag (remember) current position
.iSearch String: $; insert prompt
— ; catch characters between tag and

; end of search string
b9c ; copy search string to buffer 9
-1 ; move back one line
t.iReplace String: $-b8c ; move replace string to buffer 8
-14k ; move back one line and delete

; search/replace window
; now the search string is loaded
; into buffer 9 and the replace string
; into buffers

a
[

; move to top of file
; begin iteration level No. 1

e ; suppress error message if string
; not found

s@9$; search for the string of characters
; stored in buffer 9

@e{%} ; if the error flag is set
; (string not found) exit macro

g<space> to replace, any other key to skip $
; insert prompt in command line

@k=32[; if a space (32 decimal) in typed
-c@9$@8$] ; change string that matches the

; contents of buffer 9 to the string
; contained in buffer 8
; end iteration No. 1

78ff$0qv$$

;high bit tester
80f ; 80 column format
126v0
[

; set variable 0 to 126
; begin iteration

@0 = 255{%} ; if variable 0 equals 255 exit
vaO ; increment variable 0
@0i ; insert character equal to

; variable on the terminal screen
@o\ ; insert value of variable 0 next
32i ; insert a space
qr ; redraw the screen
] ; end iteration

; begin iteration No. 1
gl'm an overgrown typewriter$

; command line prompt
@k=127{ ; if key struck is a DELete
-mdt} ; move back, delete key just

entered
; go to beginning of iteration

@k=13[; IF key struck is a return begin
,iteration cont jnue d on pa ge 34)

33

feoture Estate Tax Plan

For those of you planning to die rich,
Aardvark Software has just the pro-
gram for you. It is called ESTATE TAX
PLAN. The version reviewed here is
version 1.3. The program is not a tax
return calculation program, but
rather a planning tool designed to
assist estate planning professionals
project potential Federal estate tax
liability.

The interest in this program is not
that it does something new or uni-
que. It doesn't. Its role is strictly
utilitarian. You, the estate planner,
collect the usual asset and liability in-
formation together with the neces-
sary biographical information. Then,
instead of spending half a day with a
scratch pad and a pocket calculator,
you simply enter this information,
wait a minute or two, and either
display the results on the screen or
drive them to the printer.

Features
Estate Tax Plan takes into account the
revisions made in the federal tax law
by the Economic Recovery Tax Act of
1981. At risk of boring everyone, it
should also be noted that this pro-
gram also makes the side calcula-
tions necessary to project the tax
benefits available under IRC Sec.
6166 and Sec. 303.

magic is accomplished by loading
portions of the overlay as needed.

As far as installation goes, there
should be no problem if your ter-
minal is 24 x 80. The terminal installa-
tion menu is longer than average,
and the appendix contains an addi-
tional two-page list of emulations.
There is also provision for the
"Other" brand of terminal.

The Estate Tax Plan is completely
menu driven. In fact, it consists of
over 89 submenus and several main
menus. The manual is a pleasantly
bound three-ring binder with tab
dividers. It shouldn't be regarded as
a model for clarity, but it is certainly
adequate for the task. The manual
does provide some examples, and
the program itself is so straight
froward that this writer was satisfied
that he had mastered its use after no
more than a couple hours of fiddling
with it.
The error handling routines in this
program are the best that I have ever
seen anywhere. This writer is of the
opinion that that good quality pro-
grams simply don't crash— no matter
what the user does. Within the limits
imposed by CP/M 2.2, Estate Tax Plan
meets this test. The error trapping is
so strong that it will generally regain
control and reload the main menu

answer. This error would eventually
cause the calculation procedure to
abort.

Summary
This program is not a substitute for a
lawyer or an accountant, but rather a
tool intended for use by such a pro-
fessional to remove the drudgery of
the extensive amount of number
crunching required to prepare an
estate plan. This limited task is ac-
complished very credibly and the
Estate Tax Plan is not suitable for ac-
tually preparing a Federal Estate Tax
return, rather it is strictly a planning
tool. Similarly it contains no provi-
sion for dealing with state death tax
liabilities. With Federal estate tax ex-
emptions soon destined to exceed
$500,000, it is doubtful if this program
will ever attain the popularity of Pac-
Man. However, the overall quality of
this program from the standpoint of
structure, organization and design is
simply outstanding. H

13i-l
Ixt
][
@ki

; insert return, move back one line
; print one line
; ELSE
; insert key into text
; end iteration No. 2

] ; end iteration No. 1
I ; macro I
qa ; limit number of string arguments

; to one
[; begin interation No. 1
ga$; get string from keyboard ??
@k = 127[-dt] ; if key hit is a DEL delete

character
; previously
; entered and return to beginning
; of iteration No. 1

[; begin iteration No. 2
@k = 13[%] ; if keyboard character equals

; carriage return
; exit this macro

@ki ; (else) insert character
] ; end second iteration
] ; end first iteration

even if the user resorts to such
devious behavior as removing a
necessary disk midway through the
program execution. Every keystroke
of keyboard input is validated a key
at a time. If it is illegal, the terminal
bell will ring and the keystroke will
be rejected. If I were to criticize the
error trapping at all, it would be to
suggest that some provision be made
to communicate the error other than
by use of the bell. There are quite a
few people around who have ter-
minals that ignore bell command
(CHR$(7)). The only real bug that I
could find in the program was in the
date input routine. It expected four
numbers consisting of the month
and the year such as 0683. Unfor-
tunately it would accept 1983 for an

The version reviewed was delivered
in the 8-inch CP/M format and oc-
cupied 240K of disk space (Apple
and IBM version are reportedly avail-
able). It consists of three files. There
is a 100K data file, a 138K program
overlay, and a 2K menu. No disk
workspace is required, and if these
files can somehow be fitted on your
drives, the program will work. (They
need not be on the same drive). If
you are wondering how a 138K pro-
gram overlay works on a 64K Z-80,
system you will have to ask someone
other than this writer. But that is the
way it is.

Actually, all available evidence sug-
gests that the ESTATE TAX PLAN is
written in PASCAL and that the

Lifelines/TheSoftware Magazine, May 1983

iimivzsireMEmrag

be added to this wait loop which would result in a time-
out indication being returned to the BASIC application
program if a character was not struck within a pre-set in-
terval.) With the user response in the A register, I now
check to see if it is a printable character
(20H< = A< = 7EH). If so, I'm ready to return it to the ap-
plication in the string
pointed to by CALL argument 1. If not, CALL argument
2's string is setup—1 to indicate ENTER was keyed, 2 for
backspace, and N for any other non-printable character.
While MBASIC provides the bridge to the assembly
subroutine with its CALL statement (parameters appear-
ing in registers when control is received by the
subroutine), we must build out own interface to return the
operator keyed character or flag indicator to MBASIC. We
have the address of the string we want to setup in either
CALL argument 1 or 2. Argument a (register pair HL)
points to the string where a printable character will be
stored while argument 2 (register pair DE) points to the
non-printable character indicator string area. A map of
the internal MBASIC string storage is in order here.

If string AB$ = T then:

Three recent Lifelines articles came together fro me to form
the nucleus of this sofware note. I had been reading Ward
Christensen's 8080 Assembler Tutorial series and was
looking for a good assembly language programming pro-
ject. Until now, I had found MBASIC to be adequate for
the application programs I moonlight to the small
business sector. Besides, since I didn't have a relocatable
macro assembler, I couldn't easily link an MBASIC pro-
gram to even the simplest assembler subroutine. But
Gregory Knott's Pseudo-Relocatable Subroutines article
(Lifelines, 6/82) proved to the link I needed. Now I could
link my BASIC programs to assembler subroutines to
achieve what, for me, was the best of both worlds— the
speed of the BASIC language for program development
and the nitty-gritty of machine language for execution
speed and functionality in certain areas not obtainable n
BASIC. Michal Karas's CP/M BDOS series provided the
assembler link to CP/M.

With the three articles in hand, I jumped into my first
MBASIC program containing a subroutine CALL. This
subroutine would give me direct control of what the user
keyed as input to my BASIC program. Too often, the input
screen templates of my application programs were "crack-
ed" by a control-C or long input that over-typed an adja-
cent field before the ENTER was hit. Now I had the tools to
implement true protected/unprotected fields on a dumb
terminal because I could capture each input code as it was
typed. What characters were echoed would also be con-
trolled by this subroutine.

the first step was to recreate the LOADSUB program
described in Gregory Knott's article. This program ex-
ecutes in the Transient Program Area (TPA) and relocates
part of itself to igh memory (A000H). It then relocates my
subroutine (DIRCTIO.COM) into higher memory (B100H)
and finally loads and executes MBASIC in the TPA.
MBASIC has options that 1) reserve memory from B100H
to FDOS and 2) load and execute my MBASIC program
(DIRCTIO.BAS). 41-42 substituting my subroutine name
(DIRCTIO.COM) for PRINTHI.COM and my MBASIC
program name (DIRCTIO) for PRINTEST. The COM file,
LOADSUB.COM, was created with Digital Research's
ASM and LOAD.
Now I was ready to write the assembler subroutine, figure
1. It would be CALLed for every input char of a user
response to the BASIC application program prompt. It
would return a printable character to be appended to the
response string, a flag indicating a certain function (i.e.
backspace or ENTER) or nothing in the case of unwanted,
unprintable characters. I chose to use the CP/M direct user
interface to console (BDOS function 6) rather than input
from console keyboard (BDOS functionl). With function
6, I could control the echo to the keyboard. Therefore I
setup a BDOS call with the E register equal OFFH (in-
dicating input). This input character is returned in A. If no
character has been entered, A equals zero. (A timer could

Address HEX Content Comment

N-3 42
N-2 41 String name

(AB)
N-l 00
N 01 Length of string

N+l low Address of 1st
byte of string

N+2 high

and CALL subroutine-name (AB$) will cause the address
N to be placed in register pair HL. So to return the desired
string to MBASIC, the assembler subroutine bumps the
corresponding register pair (HL or DE) by one and stores
the data (printable char or indicator flag) at the address
contained in the next two bytes. The RET instruction gets
us back to the MBASIC statement following the CALL.
ASM and LOAD are used to create DIRCTIO,COM.

Finally, a portion of the MBASIC program, figure 2, to il-
lustrate use of the assembler subroutine. Line 310 defines
a function for cursor positioning. Line 350 defines the
location of the assembler subroutine. Now we want to
solicit NAME from the user with
"Name: _____________________________" as a prompt.
Line 410 shows the prompt starts at position 5 of line 10.
The cursor is positioned to column 11 of that line to await
input. The WHILE/WEND structure shows a CALL to our
assembler subroutine, DIRCTIO. Upon return, either a
printable character will be found in CONSOLE.CHR$ or a
flag indicator will be set in NON.PRINT.FLAG$. In line
465 a check is made for backspace. If found and it wasn't
entered at the first position of the input area (column 11)

(continued on next page)
35Lifelines/The Software Magazine, Volume III, Number 12

we decrement the column indicator (CUR-
RENT.COLUMN%), drop the last character of our built-
up input string (REPLY$) and replace that character on the
screen with our original prompt character, the
underscore. (A backspace entered at the first position of
the input area is ignored but could be programmed to
reposition to the previous input field.) Line 470 causes a
printable character to be added to the built-up input string
and screen display. The current column indicator is also
incremented. Line 480 WENDs us back to line 440. The
loop is repeated until either the ENTER key is struck
(NON.PRINT.FLAG$ = REPLY. END% + 1), which in this
example is 12 characters. At line 495, the user input is safe-
ly tucked away in REPLY$.
As Greg-s article shows, the program is executed by:
A>LOADSUB
requiring the following files on drive A:
MBASIC.COM
DIRCTIO.COM
DIRCTIO.BAS
LOADSUB.COM
BASIC and assembler, coexisting and communicating-
each doing what it does best. Thanks Ward, Greg and
Mike.
; DIRCTIO.ASM

; Assembly language subroutine to get 1 char at a time
; from the console in DIRECT I/O mode. Returns the character
; to the calling MBASIC program by storing it in the 1 char
; string pointed to be incoming CALL parameter 1, or stores a
; flag indicator in the string pointed to by CALL parameter 2 if
; non-printable char was typed.

; no
cpi 08h ; char= BS?
jz char$bs+z ; yes

; no
mvi a,‘N’ ; non-printable char, bypass
jmp return + z

char$cr:
mvi a,T load CR indicator flag
jmp return +z

char$bs:
mvi a,‘2’ load BS indicator flag
jmp return +z

return:
pop h restore MBASIC CALL parameter 2
inx sp CALL parameter 1 not needed
inx sp
inx h point to string addr (LO)
mov c,m
inx h point to string addr (HI)
mv b,m
stax b store flag indicator in MBASIC prog
ret return to MBASIC program
end start

300 REM DIRCTIO.BAS
303 REM
305 REM MBASIC program linked to assembler subroutine
306 DIRCTIO.COM to filter user keyed input
307 REM
310 DEF FN XY$(X,Y) - CHR$(27) + CHR$(89) + CHR$(Y + 31)

+ CHR$(X + 31):
REM cursor positioning function for UNIVAC UTS-42

350 DIRCTIO% = &HB100: REM addr of assembly subroutine to get
1 char

400 REM solicit NAME
410 R0W% = 10: PR0MTP% = 5:

PROMPT$ = “ Name: ’ ’:
REPLY.START% = 11: REPLY.END% = 22: REPLY$ = SPACES
(0):
CURRENT.COLUMN% = REPLY.START%:
N0N.PRINT.FLAG = SPACES$(1)

430 PRINT FN XY$ (PROMPT%,ROW%) PROMPTS FN XY$
(REPLY.START%,ROW%):

440 WHILE NON.PRINT.FLAG$<>“1” AND
CURRENT.COLUMN%<REPLY.END% + 1

445 CONSOLE.CHAR$ = SPACE$(1):
NON.PRINT.FLAG$ = SPACE$(1)

455 CALL DIRCTIO%
(CONSOLE.CHAR$,NON.PRINT.FLAG$):

REM assembly subroutine to get 1 char
465 IF NON.PRINT.FLAG$ = “2 ” THEN IF

CURRENT.COLUMN°/b>REPLY.START% THEN
CURRENT.COLUMN% - 1:
REPLY$ = LEFT$(REPLY$,LEN(REPLY$) - 1):
PRINT FN XY$(CURRENT.COLUMN°/b,ROW%) “ ___” FN
XY$(CURRENT.COLUMN%,ROW%);

470 IF NON.PRINT.FLAG$ = SPACE$(1) THEN
REPLY$ = REPLY$ + CONSOLE.CHAR$:
CURRENT.COLUMN% = CURRENT.COLUMN% + 1: PRINT CON-
SOLE.CHAR$;

480 WEND
495 REM REPLY$ now contains NAME response
(continued from page 28)

3) Home organization.
4) Personal Education. (Including the children)
5) All other.

bdos
direct$io
inputSfla-
g

equ 005h
equ 0006h

equ OFFh

; CP/M bdos entry vector
; bdos direct I/O function number

; direct I/O input indicator

start org 0100h ; CP/M TPA base address
loc equ OblOOh ; subroutine starting address
z equ loc-$; TPA to LOC relocation constant

wait:

no$prt:

36

push

push

mvi
mvi
call
cpi
jz

cpi
jnc
cpi
jc

inx
inx
pop
inx
mov
inx
stax
ret

cpi
jz

h

d

e,input$flag
c,direct$io
bdos
0
wai t+z

07Fh
no$prt+z
020h
no$prt+

sp
sp
h
h
c,m
h
b

Odh
char$cr+z

; save MBASIC CALL parameter 1
; (printable char string addr)
; save MBASIC CALL parameter 2
; (nonprintable flag string addr)

; set direct I/O function for input
; bdos function number
; obtain 1 char or status in A reg
; if (A) = 0 no char was ready
; continue waiting
; 20h<=char<=7Eh?

; no

; no
; yes, a printable char
; CALL parameter 2 not needed

; restore MBASIC CALL parameter 1
; point to string addr (LO)

; point to string addr (HI)
; store input char in MBASIC program
return to MBASIC program

; char=CR?
; yes

Bulletin Board:
Free and available to anyone.
300 baud access: 617-842-1435

1200 baud (212A) access:
617-842-1712
11 PM to 8 AM daily, other
hours on notice both on the

system and through out
newsletters.

SIG/86 Users Group
for MS-DOS (PC-DOS) Users
47-4 Sheridan Drive
Shrewsbury, MA 01545
617-845-1074

Membership Information:
Rates: $18.00/year

10.00/6 months
Lifelines/TheSoftware Magazine, May 1983

All you dBASE II hotshots
are about to get what you
deserve.

I ■

You've written all those slick
dBASE II programs.

Business and personal
programs. Scientific and
educational applications.
Packages for just about
every conceivable informa-
tion handling need.

And everybody who
sees them loves them because

We’ll also provide additional “how to"
information to get you off and running as a
software publisher sooner.

And we’ll make your products part of
our Marketing Referral Service. Besides put-
ting you on our referral hotline, we'll publish
your program descriptions and contact
information in dBASE II Applied, a directory
now in computer stores world-wide.

Go for it.
But we can't do any of this until we

hear from you.
For details, write RunTime Applications

Development, Ashton-Tate, 10150 West
Jefferson Boulevard, Culver City, CA 90230.

Or better yet, just call (213) dBASE
204-5570. And get what you
deserve today.

they're so powerful, friendly and easy to use.
But that's just not good enough.
Uh-uh.
Because now you can get the gold and the

glory that you really deserve.

Here's how.
We’ve just released our dBASE II

RunTime™ application development module.
And it can turn you into an instant

software publisher.
The RunTime module condenses and

encodes your source files, protecting your
special insights and techniques, so you can
sell your code without giving the show away.

RunTime also protects your margins
and improves your price position in the
marketplace. If your client has dBASE II, all
he needs is your encoded application. If not,
all you need to install your application is the
much less expensive RunTime module.

We'll tell the world.
With your license for the dBASE II

RunTime module, we provide labels that
identify your program as a dBASE II applica-
tion, and you get the benefit of all the
dBASE II marketing efforts.

ASHTON -TATE ■

-

Lifelines™
/ The Softw

are M
agazine

1651 T
hird A

ve., N
ew

 Y
ork, N

ew
 Y

ork 10028

